
${\bf Aufgabe} \,\, 2-Asymptotisches \,\, Wachstum.$

(a) (Leicht.) Sortieren Sie die folgenden Funktionen asymptotisch, d.h. entsprechend der O-Notation. Dabei bezeichnet $\log n$ den Logarithmus zur Basis 2, und $\ln n$ den natürlichen Logarithmus. In welchen Fällen haben Sie asymptotische Gleichheit $\Theta(.)$?

$$n$$
, $0.01n^2$, e^n , $\log n$, 2^{32} , 2^n , $n + \sqrt{n}$,

Aufgabe 3 - Induktion

(a) Zeigen Sie für alle $n \in \mathbb{N}$:

$$\frac{\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}}{|2|}$$

Base Case:
$$(n=1)$$
 $\frac{1}{1 \cdot 2} = \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n \cdot (n+1)} = \frac{n}{n+1}$.

$$= \frac{k(k+2)}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+2)}$$

																		+h	_									
b)									egel	oen	. V	/ir	vei	we	nd	en	Ind	ukti	on	ük	oer	n.	•					
							fan											1										
								1SS																				
	In	dı	ıkt	tio	ns	be	ha	upt	tur	ıg:																		
	In	dι	ıkt	tio	$\mathbf{n}\mathbf{s}$	sch	ırit	t t:	Es	gil	t																	
		/1	. 1	n	+1																		-					
	($(1 \cdot$	+ /	i)		=		(~		1\7	<u></u>				2	_								=				
						_	1 +	-(r)	ι +	1)/	ι .																	
+																			+									
-																												
+		+																										
		-																										
																			+									
		+																										
-		-																										
+		+																		-								
																				1								

Aufgabe 4 – Eine generelle Eigenschaft von Graphen

Zeigen Sie, dass jeder Graph G mit $n \geq 2$ Knoten zwei Knoten $v \neq w$ enthält, sodass deg(v) = deg(w).

Hinweis: Für ein gegebenes n, was ist der grösstmögliche Grad den ein Knoten haben kann?

To show: All G with n≥2

has 2 vertices $v \neq w$ s.t. deg(v) = deg(w)

Assume that G has n vertices

- \Rightarrow Vertices can have an edge with 0,1,...,n-1 other different vertices
- Here is a vertex with a degree of n-1, then there con't be another vertex v with deg(v)=0.

 It's impossible to have a G with 2 vertices $v\neq w$ s.t. deg(v)=0 and deg(w)=n-1
- \Rightarrow The vertices can have at most n-1 different degrees $(x_1, \dots, n-1)$ or (x_1, \dots, x_n)

There are n vertices.

According to Pigeonhole Principle there are at least 2 vertices a, b with deg(a) = deg(b)

${\bf Aufgabe}~5-{\bf Algorithmus}$

Beschreiben Sie einen Algorithmus der das folgende Problem löst: Gegeben ist die Eingabe bestehend aus einen Graphen G=(V,E) mit n Knoten (gehen Sie davon aus, dass der Graph als Adjazenzliste gegeben ist). Ihr Algorithmus soll "Ja" ausgeben, falls G ein Baum ist und "Nein" andernfalls.

Wie immer wenn Sie einen Algorithmus beschreiben gehöhrt zu einer vollständigen Lösung: eine klare Beschreibung des Algorithmus, ein Korrektheitsbeweis und eine Laufzeitanalyse.

Hinweis: Für diese Aufgabe dürfen Sie das Statement aus Aufgabe 6 ohne Beweis verwenden.

Given:	G(V,E) with n vertices
Return:	Jes if G is a tree, otherwise no
Properties:	G(V,E), IV(>1
	G is a tree
	G is connected and has no cycle
	G is connected and IEI=IVI-I
	G has no cycle and IEI=IVI-I
	For all xiye V: G has only one x-y path
N1:-H	
Algorith	
	Count IEI
	if (IEI \neq IVI -1) return "No"
	DFS
	if (we visit a vertex that is already visited) "
	return "Yes"

Aufgabe 6 – Charakterisierung von Bäumen (Challenge-Aufgabe)

Zeigen Sie: Ist G = (V, E) ein Graph auf $|V| \ge 1$ Knoten, so sind die folgenden Aussagen äquiva-

- (a) G ist zusammenhängend und kreisfrei (d.h. G ist ein Baum).
- (b) G ist zusammenhängend und |E| = |V| 1.
- (c) G ist kreisfrei und |E| = |V| 1.
- (d) Für alle $x, y \in V$ gilt: G enthält genau einen x-y-Pfad.

Satz 1.6 im Skript