

A & W **Exercise Session 9** Randomized Algorithms

Connectivity

- Articulation Points & Menger's Theorem 4 Bridges
- 4 Block Decomposition

Cycles

Le Eulerian Cycle Lo Hamiltonian Cycle G TSP

Matchings

Le Definition Le Hall's Theorem Shallgorithms

Colorings

Le Definition 🔶 Algorithm

& Brooks's Theorem

Vahrscheinlichkeit

- 4 Grundbegriffe und Notationen
- 4 Bedingte Wahrscheinlichkeiten
- 6 Unabhängigkeiten
- 🗣 Zufallsvariablen
- 4 Wichtige Diskrete Verteilungen
- 🕒 Albschätzen von Wahrscheinlichkeiten

A&W Overview

• Probability Kahoot

Randomized Algorithms I

Outline

TEACHERS BELIKE

TEACHERS TRYING TO HOLD ON UNTIL SPRING BREAK

Probability Kahoot

Let's take a break

Randomized Algorithms

Randomized Algorithms Classic vs. Randomized

classic

Input I Algorithm A Output A(I)

randomized

Input I Algorithm A \longrightarrow Random Variable *R* random bits, random numbers Output A(I, R)

Randomized Algorithms Classic vs. Randomized

classic

Input I Algorithm A Output A(I)

randomized

Input I Algorithm A RNG R ← → random bits, random numbers Output A(I, R)

 $Pr_R[\text{Runtime} \leq O(f(n))] \geq \dots$ for all *I* with |I| = n

Randomized Algorithms Las-Vegas vs. Monte-Carlo

Las-Vegas

- can output true answer
- cannot output false answer
- can run forever/ can output no answer (???)

Runtime is the RV

Monte-Carlo

- can output true answer
- can output false answer
- always outputs an answer

Correctness/Quality is the RV

Randomized Algorithms Las-Vegas vs. Monte-Carlo

Las-Vegas Runtime is the RV

- can output true answer •
- cannot output false answer
- can run forever/ can output no answer (???)

Input: An array of $n \ge 2$ elements, in which half are 'a's and the other half are 'b's.

Output: Find an '*a*' in the array.

```
findingA_LV(array A, n)
begin
    repeat
        Randomly select one element out of n elements.
    until 'a' is found
end
```


Monte-Carlo

Correctness/Quality is the RV

- can output true answer \bullet
- can output false answer
- always outputs an answer

```
findingA_MC(array A, n, k)
begin
    i := 0
    repeat
        Randomly select one element out of n elements.
        i := i + 1
    until i = k or 'a' is found
end
```


Randomized Algorithms Reducing the error probability - Las Vegas

To reduce the error probability by a constant factor, only a constant number of additional iterations are necessary

sometimes outputs '???' where $\Pr[A(I) \text{ correct}] \geq \varepsilon$

'???' is returned $N = \left[\varepsilon^{-1} \ln \delta^{-1}\right]$ times

Then it holds that $\Pr[A_{\delta}(I) \text{ correct}] \geq 1 - \delta$

Las-Vegas

Runtime is the F

- can output true answer
- cannot output false answer

 $\varepsilon = 0.25$

can run forever/ can output no answer (???)

- Let A be a randomized algorithm that never returns an incorrect answer but
 - A_{δ} : invokes A until either a value different from '???' is returned or

δ	$\mathit{N} = \lceil \varepsilon^{-1} \ln \delta^{-1} \rceil$
 0.1	10
0.01	19
0.001	28
0.0001	37
0.00001	47
0.000001	56

Randomized Algorithms Reducing the error probability - Monte-Carlo

Fehlerreduktionen:

- wahrscheinlichkeit eines Monte-Carlo-Algorithmus von $\frac{1}{2} + \varepsilon$ auf $\geq 1 \delta$.
- wahrscheinlichkeit von ε auf $\geq 1 \delta$.
- Intervall $\left[(1-\varepsilon) \frac{|S|}{|U|}, (1+\varepsilon) \frac{|S|}{|U|} \right].$

• Wiederholung MC: Eine N-fache Wiederholung mit $N = 4\varepsilon^{-2} \ln \delta^{-1}$ steigert die Erfolgs-

• Wiederholung MC mit einseitigem Fehler: Eine N-fache Wiederholung mit N = $\varepsilon^{-1} \ln \delta^{-1}$ steigert f $\tilde{A}_{\underline{A}}^{1}$ r einen Monte-Carlo-Algorithmus mit einseitigem Fehler die Erfolgs-

• Target Shooting: Bestimmt der Target-Shooting-Algorithmus eine Menge $S \subseteq U$ mit $N \geq 3 \frac{|U|}{|S|} \varepsilon^{-2} \ln (2/\delta)$ Versuchen, so ist die Ausgabe mit Wahrscheinlichkeit $\geq 1 - \delta$ im

Target-Shooting Problem Description

finite sets S and U with $S \subseteq U$ given : Sto find :

We can generate elements u in Uuniformly distributed

$$I_{S}: U \to \{0,1\}$$
$$I_{S}(u) = 1 \iff u \in S$$

Target-Shooting Problem Description

finite sets S and U with $S \subseteq U$ given : to find : \approx

We can generate elements u in Uuniformly distributed

$$I_{S}: U \to \{0,1\}$$
$$I_{S}(u) = 1 \iff u \in S$$

U is very large. We cannot afford to iterate through U

1: Pick u_1, \ldots, u_N from U randomly, uniformly and independently 2 : Return $\frac{1}{N} \cdot \sum_{i=1}^{N} I_{S}(u_{i})$

given : finite sets S and U with $S \subseteq U$

to find : $\approx \frac{|S|}{|U|}$

 $I_{S}(u) = 1 \iff u \in S$

1: Pick u_1, \ldots, u_N from U randomly, uniformly and independently $I_S(u_i)$ 2 : Return -

given : finite sets S and U with $S \subseteq U$

to find : $\approx \frac{|S|}{1}$

 $I_{S}(u) = 1 \iff u \in S$

1: Pick u_1, \ldots, u_N from U randomly, uniformly and independently $I_S(u_i)$ 2 : Return -

given : finite sets S and U with $S \subseteq U$

to find : $\approx \frac{|S|}{|S|}$

 $I_{S}(u) = 1 \iff u \in S$

1: Pick u_1, \ldots, u_N from U randomly, uniformly and independently

2 : Return
$$\frac{1}{N} \cdot \sum_{i=1}^{N} I_S(u_i)$$

$$\frac{1}{10} \cdot \sum_{i=1}^{10} I_S(u_i) = \frac{3}{10}$$

given : finite sets S and U with $S \subseteq U$

to find : $\approx \frac{|S|}{|S|}$

 $I_S(u) = 1 \iff u \in S$

1: Pick u_1, \ldots, u_N from U randomly, uniformly and independently 2 : Return $\frac{1}{N} \cdot \sum_{i=1}^{N} I_S(u_i)$

Fehlerreduktionen:

given : finite sets S and U with $S \subseteq U$

to find : $\approx \frac{|S|}{|U|}$

 $I_{S}(u) = 1 \iff u \in S$

• Wiederholung MC: Eine N-fache Wiederholung mit $N = 4\varepsilon^{-2} \ln \delta^{-1}$ steigert die Erfolgswahrscheinlichkeit eines Monte-Carlo-Algorithmus von $\frac{1}{2} + \varepsilon$ auf $\geq 1 - \delta$.

• Wiederholung MC mit einseitigem Fehler: Eine N-fache Wiederholung mit N = $\varepsilon^{-1} \ln \delta^{-1}$ steigert f \tilde{A}_{4}^{1} r einen Monte-Carlo-Algorithmus mit einseitigem Fehler die Erfolgswahrscheinlichkeit von ε auf $\geq 1 - \delta$.

• Target Shooting: Bestimmt der Target-Shooting-Algorithmus eine Menge $S \subseteq U$ mit $N \geq 3 \frac{|U|}{|S|} \varepsilon^{-2} \ln (2/\delta)$ Versuchen, so ist die Ausgabe mit Wahrscheinlichkeit $\geq 1 - \delta$ im Intervall $\left[(1-\varepsilon) \frac{|S|}{|U|}, (1+\varepsilon) \frac{|S|}{|U|} \right].$

Finding Duplicates Problem Description

given :

to find : find all duplicates in D

$$\mathcal{D} = \begin{pmatrix} A, C, B, Z, C, B, C \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{pmatrix}$$
$$\mathsf{Dupl}(\mathcal{D}) = \{(2,5), (2,7), (5,7), (3,6)\}$$

A dataset $D = (s_1, s_2, \dots, s_n)$, is a sequence of *n* elements

(i,j) with $1 \leq i < j \leq n$ is a duplicate in D if $S_i = S_i$

Finding Duplicates Problem Description

A dataset $D = (s_1, s_2, \ldots, s_n)$, is a sequence of *n* elements given :

to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$

Hashfunction h :

 $h: U \to [m]$ $[m] = \{1, 2, ..., m\}$

h is efficiently computable h behaves like a random variable

Elements in D are very large. Storing and comparing is expensive

Finding Duplicates Problem Description

given: A dataset $D = (s_1, s_2, \ldots, s_n)$, is a sequence of *n* elements

to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$

Hashfunction h :

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

Our m is much smaller than |U| (compression)

Elements in D are very large. Storing and comparing is expensive

 $h: U \to [m]$ $[m] = \{1, 2, ..., m\}$ $\forall u \in U \ \forall i \in [m]:$ $\Pr[h(u) = i] = \frac{1}{-1}$ \mathcal{M}

 $s_i = s_i \implies h(s_i) = h(s_i)$

Finding Duplicates Algorithm

given : A dataset $D = (s_1, s_2, ..., s_n)$, is a sequence of n elements to find : find all duplicates in D (i, j) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$ Hashfunction h :

 $h: U \to [m] \quad [m] = \{1, 2, \dots, m\} \quad \forall u \in U \ \forall i \in [m]: \quad \Pr[h(u) = i] = \frac{1}{m}$

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

 $s_i = s_i \implies h(s_i) = h(s_j)$

Our m is much smaller than |U| (compression)

Finding Duplicates Challenge : Collisions

С A hashing: h(C)h(A)sorting: **(12**, 3) **(12**, 4) duplicates: (3, 6),

given : A dataset $D = (s_1, s_2, \dots, s_n)$, is a sequence of *n* elements to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$ Hashfunction h :

 $h: U \to [m]$ $[m] = \{1, 2, \dots, m\}$ $\forall u \in U \ \forall i \in [m]:$ $\Pr[h(u) = i] =$ т

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

 $s_i = s_i \implies h(s_i) = h(s_j)$

Our *m* is much smaller than |U| (compression)

collision : h(B) = h(Z)

Finding Duplicates Challenge : Collisions

Collision :

The new, undesired duplicates in the hashmap the pairs $(i,j), 1 \le i < j \le n$, with $s_i \ne s_j$ and $h(s_i) = h(s_j)$

given : A dataset $D = (s_1, s_2, \dots, s_n)$, is a sequence of *n* elements to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$ Hashfunction h :

 $h: U \rightarrow [m] \quad [m] = \{1, 2, \dots, m\} \quad \forall u \in U \ \forall i \in [m]: \quad \Pr[h(u) = i] = \frac{1}{-1}$

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

 $s_i = s_i \implies h(s_i) = h(s_i)$

Our *m* is much smaller than |U| (compression)

Finding Duplicates Challenge : Collisions Collision :

The new, undesired duplicates in the hashmap the pairs $(i, j), 1 \leq i < j \leq n$, with $s_i \neq s_j$ and $h(s_i) = h(s_j)$ **E#Collisions:**

 $K_{i,i}$ bernoulli RV. with :

$$\Pr[K_{i,j} = 1] = \begin{cases} \frac{1}{m} & \text{if } s_i \neq 0\\ 0 & \text{othe} \end{cases}$$

 $\mathbb{E}[\#Collisions] =$

given : A dataset $D = (s_1, s_2, \dots, s_n)$, is a sequence of *n* elements to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$ Hashfunction h : $h: U \to [m]$ $[m] = \{1, 2, \dots, m\}$ $\forall u \in U \ \forall i \in [m]:$ $\Pr[h(u) = i] = \frac{1}{m}$

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

 $s_i = s_i \implies h(s_i) = h(s_i)$

Our *m* is much smaller than |U| (compression)

$$K_{i,j} = 1 \iff (i,j)$$
 is a collision

 $\neq S_i$ $\mathbb{E}[K_{i,j}] \leq \frac{1}{m}$ erwise

$$\sum_{1 \le i < j \le n} \mathbb{E}[K_{i,j}] \le \binom{n}{2} \cdot \frac{1}{m}$$

Finding Duplicates Challenge : Collisions Collision :

The new, undesired duplicates in the hashmap the pairs $(i, j), 1 \leq i < j \leq n$, with $s_i \neq s_j$ and $h(s_i) = h(s_j)$ **E**[#Collisions]:

 $K_{i,i}$ bernoulli RV. with :

$$\Pr[K_{i,j} = 1] = \begin{cases} \frac{1}{m} & \text{if } s_i \neq 0\\ 0 & \text{othe} \end{cases}$$

given : A dataset $D = (s_1, s_2, \dots, s_n)$, is a sequence of *n* elements to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$ Hashfunction h : $h: U \to [m]$ $[m] = \{1, 2, \dots, m\}$ $\forall u \in U \ \forall i \in [m]:$ $\Pr[h(u) = i] = \frac{1}{m}$

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

 $s_i = s_i \implies h(s_i) = h(s_i)$

Our *m* is much smaller than |U| (compression)

$$K_{i,j} = 1 \iff (i,j)$$
 is a collision

 $\neq S_i$ $\mathbb{E}[K_{i,j}] \leq \frac{1}{m}$ erwise

 $\mathbb{E}[\text{#Collisions}] \le \binom{n}{2} \cdot \frac{1}{m} < 1 \quad \text{for } m = n^2$

Finding Duplicates Runtime

Collision :

The new, undesired duplicates in the hashmap the pairs $(i,j), 1 \le i < j \le n$, with $s_i \ne s_j$ and $h(s_i) = h(s_j)$

Runtime :

- n hash computations
- sorting in O(n log n)

Overall : O(n log n)

given : A dataset $D = (s_1, s_2, \dots, s_n)$, is a sequence of *n* elements to find : find all duplicates in D (*i*, *j*) with $1 \le i < j \le n$ is a duplicate in D if $s_i = s_j$ Hashfunction h : $h: U \to [m]$ $[m] = \{1, 2, \dots, m\}$ $\forall u \in U \ \forall i \in [m]:$ $\Pr[h(u) = i] = \frac{1}{m}$

Each $h(s_i)$ is uniformly randomly distributed in [m] BUT

 $s_i = s_i \implies h(s_i) = h(s_i)$

Our *m* is much smaller than |U| (compression)

 $\mathbb{E}[\text{#Collisions}] \le \binom{n}{2} \cdot \frac{1}{m} < 1 \quad \text{for } m = n^2$

additional memory

 $m = n^2$ $O(n \log n) + O(n \log m)$ $O(n \log n)$ indices hash values

• duplicate check comparisons (|Dup|(D)|+#Kollisionen) $\approx O(n)$

Final Announcements

• Easter break is the best !!

- For us :
 - Revisiting is possible.
 - Give me feedback with the form
 - I'm one text away ! (can take some time)

YOU SKIPPED THE LAST DAY OF **SCHOOL BEFORE SPRING BREAK?**

Questions Feedbacks, Recommendations

