
A&W

Nil Ozer

Exercise Session 9
Randomized Algorithms

A&W Overview

Outline

• Probability Kahoot

• Randomized Algorithms I

Spring Break

Probability Kahoot

Let’s take a break

Randomized Algorithms

Classic vs. Randomized
Randomized Algorithms

Input I

Algorithm A

Output A(I)

Input I

Algorithm A

Output A(I, R)

classic randomized

Random Variable R
random bits, random numbers

Classic vs. Randomized
Randomized Algorithms

Input I

Algorithm A

Output A(I)

Input I

Algorithm A

Output A(I, R)

RNG R
random bits, random numbers

classic randomized

Classic vs. Randomized
Randomized Algorithms

Input Algorithm Output

RNG R

random bits, random numbers

classic randomized

• is correct for all A(I) I

I A A(I)
Input Algorithm Output

I A A(I, R)

• The runtime is O(f(n)) for all
with n

I
| I | =

• is correct with
… for all

A(I, R)
PrR[A(I, R) is correct] ≥ I

• The runtime is O(f(n)) and/or

Runtime O(f(n))] … for all with nPrR[≤ ≥ I | I | =

Classic vs. Randomized
Randomized Algorithms

Input Algorithm Output

RNG R

random bits, random numbers

classic randomized

• is correct and definite
for all

A(I)
I

I A A(I)
Input Algorithm Output

I A A(I, R)

• The runtime is O(f(n)) for all
with n

I
| I | =

• is correct with
… for all

A(I, R)
PrR[A(I, R) is correct] ≥ I

• The runtime is O(f(n)) and/or

Runtime O(f(n))] … for all with nPrR[≤ ≥ I | I | =

 can’t be reproduced

A(I, R)

Las-Vegas vs. Monte-Carlo
Randomized Algorithms

Las-Vegas Monte-Carlo

• can output true answer
• cannot output false answer
• can run forever/ can output no

answer (???)

• can output true answer
• can output false answer
• always outputs an answer

Runtime is the RV Correctness/Quality is the RV

Las-Vegas vs. Monte-Carlo
Randomized Algorithms

Las-Vegas Monte-Carlo

• can output true answer
• cannot output false answer
• can run forever/ can output no

answer (???)

• can output true answer
• can output false answer
• always outputs an answer

Reducing the error probability - Las Vegas
Randomized Algorithms

To reduce the error probability by a constant factor, only a
constant number of additional iterations are necessary

Let be a randomized algorithm that never returns an incorrect answer but
sometimes outputs ‘???’ where

A
Pr[A(I) correct] ≥ ε

 : Aδ invokes until either a value different from ‘???’ is returned or

‘???’ is returned times

A

N = ⌈ε−1 ln δ−1⌉
Then it holds that Pr[Aδ(I) correct] ≥ 1 − δ

Reducing the error probability - Monte-Carlo
Randomized Algorithms

Problem Description
Target-Shooting

given :

to find :

finite sets and with S U S ⊆ U

|S |
|U |

We can generate elements in
uniformly distributed

u U

 IS : U → {0,1}
 IS(u) = 1 ⟺ u ∈ S

Problem Description
Target-Shooting

given :

to find :

finite sets and with S U S ⊆ U

 ≈
|S |
|U |

We can generate elements in
uniformly distributed

u U

 is very large. We cannot
afford to iterate through
U

U

 IS : U → {0,1}
 IS(u) = 1 ⟺ u ∈ S

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

1
10

⋅
10

∑
i=1

IS(ui) =
3
10

|S |
|U |

≈
20
64

= 0.3125

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Problem Description
Finding Duplicates

given :

to find :

A dataset , is a sequence of elementsD = (s1, s2, . . . , sn) n

find all duplicates in D with is a duplicate in if (i, j) 1 ≤ i < j ≤ n D
si = sj

Problem Description
Finding Duplicates

given :

to find :

A dataset , is a sequence of elementsD = (s1, s2, . . . , sn) n

find all duplicates in D with is a duplicate in if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in are very large.

Storing and comparing is
expensive

D

Hashfunction h :

h : U → [m]

h is efficiently computable
h behaves like a random variable

[m] = {1,2,...,m}

∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =
1
m

(independent for different u)

Problem Description
Finding Duplicates

given :

to find :

A dataset , is a sequence of elementsD = (s1, s2, . . . , sn) n

find all duplicates in D with is a duplicate in if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in are very large.

Storing and comparing is
expensive

D

Hashfunction h :
h : U → [m] [m] = {1,2,...,m} ∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =

1
m

Each is uniformly randomly distributed in BUTh(si) [m]

si = sj ⟹ h(si) = h(sj)

Our is much smaller than (compression)m |U |

Algorithm
Finding Duplicates

hashing:

sorting:
duplicates:

Challenge : Collisions
Finding Duplicates

hashing:

sorting:
duplicates:

collision : h(B) = h(Z)

Challenge : Collisions
Finding Duplicates

Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)

Challenge : Collisions
Finding Duplicates
Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] = ∑
1≤i<j≤n

𝔼[Ki,j] ≤ (n
2) ⋅

1
m

Challenge : Collisions
Finding Duplicates
Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2

Runtime
Finding Duplicates
Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2

Runtime :
• n hash computations
• sorting in O(n log n)

• duplicate check comparisons (|Dupl(D)|+#Kollisionen) O(n)≈

O(n log n)

indices

+ O(n log m)

hash values

m=n2
= O(n log n)

additional memory

Overall : O(n log n)

Final Announcements

• Easter break is the best !!

• For us :

• Revisiting is possible .

• Give me feedback with the form

• I’m one text away ! (can take some time)

Questions

Nil Ozer

Feedbacks , Recommendations

