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• Probability Kahoot 

• Randomized Algorithms I



Spring Break 



Probability Kahoot



Let’s take a break



Randomized Algorithms
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Classic vs. Randomized
Randomized Algorithms

Input Algorithm Output

RNG  R

random bits, random numbers

classic randomized

•  is correct for all A(I) I

I A A(I)
Input Algorithm Output

I A A(I, R)

• The runtime is O(f(n)) for all  
with n

I
| I | =

•  is correct with 
… for all 

A(I, R)
PrR[A(I, R) is correct] ≥ I

• The runtime is O(f(n)) and/or

Runtime  O(f(n)) ]  … for all  with nPrR[ ≤ ≥ I | I | =



Classic vs. Randomized
Randomized Algorithms

Input Algorithm Output

RNG  R

random bits, random numbers

classic randomized

•  is correct and definite 
for all 

A(I)
I

I A A(I)
Input Algorithm Output

I A A(I, R)

• The runtime is O(f(n)) for all  
with n

I
| I | =

•  is correct with 
… for all 

A(I, R)
PrR[A(I, R) is correct] ≥ I

• The runtime is O(f(n)) and/or

Runtime  O(f(n)) ]  … for all  with nPrR[ ≤ ≥ I | I | =

 can’t be reproduced

A(I, R)



Las-Vegas vs. Monte-Carlo
Randomized Algorithms

Las-Vegas Monte-Carlo

• can output true answer
• cannot output false answer
• can run forever/ can output no 

answer (???)

• can output true answer
• can output false answer
• always outputs an answer

Runtime is the RV Correctness/Quality is the RV
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Reducing the error probability - Las Vegas
Randomized Algorithms

To reduce the error probability by a constant factor, only a 
constant number of additional iterations are necessary

Let  be a randomized algorithm that never returns an incorrect answer but 
sometimes outputs ‘???’ where  

A
Pr[A(I) correct] ≥ ε

 : Aδ invokes  until either a value different from ‘???’ is returned or  

‘???’ is returned  times 

A

N = ⌈ε−1 ln δ−1⌉
Then it holds that  Pr[Aδ(I) correct] ≥ 1 − δ



Reducing the error probability - Monte-Carlo
Randomized Algorithms



Problem Description
Target-Shooting

given : 

to find : 

finite sets  and  with S U S ⊆ U

|S |
|U |

We can generate elements  in  
uniformly distributed

u U

 IS : U → {0,1}
 IS(u) = 1 ⟺ u ∈ S



Problem Description
Target-Shooting

given : 

to find : 

finite sets  and  with S U S ⊆ U

   ≈
|S |
|U |

We can generate elements  in  
uniformly distributed

u U

 is very large. We cannot 
afford to iterate through 
U

U

 IS : U → {0,1}
 IS(u) = 1 ⟺ u ∈ S



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)

1
10

⋅
10

∑
i=1

IS(ui) =
3
10

|S |
|U |

≈
20
64

= 0.3125



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)



Problem Description
Finding Duplicates

given : 

to find : 

A dataset  , is a sequence of  elementsD = (s1, s2, . . . , sn) n

find all duplicates in D  with  is a duplicate in  if (i, j) 1 ≤ i < j ≤ n D
si = sj
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to find : 

A dataset  , is a sequence of  elementsD = (s1, s2, . . . , sn) n

find all duplicates in D  with  is a duplicate in  if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in  are very large. 

Storing and comparing is 
expensive

D

Hashfunction h : 

h : U → [m]

h is efficiently computable
h behaves like a random variable

[m] = {1,2,...,m}

∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =
1
m

(independent for different u)



Problem Description
Finding Duplicates

given : 

to find : 

A dataset  , is a sequence of  elementsD = (s1, s2, . . . , sn) n

find all duplicates in D  with  is a duplicate in  if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in  are very large. 

Storing and comparing is 
expensive

D

Hashfunction h : 
h : U → [m] [m] = {1,2,...,m} ∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =

1
m

Each  is uniformly randomly distributed in  BUTh(si) [m]

si = sj ⟹ h(si) = h(sj)

Our  is much smaller than  ( compression )m |U |



Algorithm
Finding Duplicates

hashing:

sorting:
duplicates:



Challenge : Collisions
Finding Duplicates

hashing:

sorting:
duplicates:

collision : h(B) = h(Z)
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Finding Duplicates

Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)



Challenge : Collisions
Finding Duplicates
Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] = ∑
1≤i<j≤n

𝔼[Ki,j] ≤ (n
2) ⋅

1
m



Challenge : Collisions
Finding Duplicates
Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision
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1
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1
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2) ⋅

1
m
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Runtime
Finding Duplicates
Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2

Runtime :
• n hash computations
• sorting in O(n log n)

• duplicate check comparisons (|Dupl(D)|+#Kollisionen)  O(n)≈

O(n log n)

indices

+ O(n log m)

hash values

m=n2
= O(n log n)

additional memory

Overall : O(n log n)



Final Announcements

• Easter break is the best !!  

• For us :  

• Revisiting is possible . 

• Give me feedback with the form  

• I’m one text away ! (can take some time)



Questions

Nil Ozer

Feedbacks , Recommendations


