
A&W

Nil Ozer

Exercise Session 5
Coloring



A&W Overview



Outline

• T1 Discussion  

• Matching Kahoot 

• Coloring 

• Minitest 2 - coloring discussion



• 1.c : Reflexivity argument accepted  

• Watch out for the comments ! 

• Keep up the good work ! 👏👏👏 

• Questions, issues … Let me know ! 

T1
Feedback + Discussion



• Anki card approach changed (instead we have kahoots for now)  

• Matching kahoot this week 

• Cycles + TSP kahoot next week … 

• T2 (peer grading 1) ??  

• Namings:  

• T1(theoretical exercise 1) , T2(peer grading 1), T3(theoretical exercise 2) … 

Some Announcments



Matching Kahoot



Coloring



Coloring
Intuition



edges are our enemies

Coloring
Intuition

Matching Coloring

pairing adjacent vertices 
without conflicts  

(pairing non-adjacent edges) 

seperating adjacent vertices

ensure that selected edges 
don’t touch the same vertex

ensure that the connected 
vertices have distinct colors

edges are our friends



edges are our enemies

Coloring
Intuition

pairing adjacent vertices without conflicts  

(pairing non-adjacent edges) 

seperating adjacent vertices

ensure that selected edges don’t touch the 
same vertex

ensure that the connected vertices have 
distinct colors

edges are our friends

k-matched G is also (k-1)-matched (k-1)-colored G is also k-colored

simply remove 1 edge simply change one node’s color

Matching Coloring



Coloring
Definitions

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Color vertices in a way that no two vertices that 
share an edge are of the same color



Coloring
Examples

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ? 



Coloring
Examples

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ? 

✅ 



Coloring
Examples

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ? 

✅ 



Coloring
Examples

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ? 

❌ 



Coloring
Definitions

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed 
to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G



Coloring
k-partite

• General version of the bipartite 

• A graph  is called k-partite if  

• the vertex set  can be divided into k disjoint sets  

• s.t. for every edge  ,  and  belong to different sets  and  

where 

G = (V, E)

V V = V1 ∪ V2 ∪ . . . ∪ Vk

(u, v) ∈ E u v Vi Vj

i ≠ j



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3 χ(G1) = 2



Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3 χ(G1) = 2

Do you notice something ? 



Coloring
Problem

For all  ,  given a graph  ,  

is  ? 

k ≥ 3 G = (V, E)

χ(G) ≤ k

NP - Complete



NP-Complete
For all  ,  given a graph  , is  ? k ≥ 3 G = (V, E) χ(G) ≤ k

NP - Complete

A problem a  in NP is NP-complete if : 

P : polynomial  

NP : non-deterministic polynomial

a ∈ P ⟹ P = NP
?

Complexity Theory 
TI next semester 

• NP is the set of decision problems solvable in polynomial time 
by a nondeterministic Turing machine.

• NP is the set of decision problems verifiable in polynomial 
time by a deterministic Turing machine.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Deterministic_Turing_machine


Let’s take a break



• Pick an arbitrary order of the vertices :  

•  

• for i = 2 to n do  

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

Coloring
Greedy Algorithm

color the first vertex with color 1 

min color k s.t. it’s not equal to the color of the neighbors of  that are already coloredvi



Coloring
Greedy Algorithm

c : 

k indexing for colors : 

i 1 2 3 4 5 6 7 8

c[vi]



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

c : 
i 1 2 3 4 5 6 7 8

c[vi]



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

✅ 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

✅ 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1

✅ k = 2 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2

✅ k = 2 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2

k = 2 ✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2

k = 2 ✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2

k = 2 ✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2

k = 2 ✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2

k = 2 

✅ k = 3 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3

k = 2 

✅ k = 3 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3

k = 2 

k = 3 

✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2 

k = 3 

✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2 

k = 3 

✅ 

k = 4 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1 4

k = 2 

k = 3 

✅ 

k = 4 

done



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

Δ(G) := maximum degree in G

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)

Greedy Algorithm - Observations



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)  is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)  is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)  is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)  is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G



Coloring
Greedy Algorithm - Observations

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)  is k-partiteχ(G) ≤ k ⟺ G

Δ(G) := maximum degree in G



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors 

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)

• There exists bipartite Graphs and order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

|V | / 2

Greedy Algorithm - Observations



Coloring

• For the chosen order of vertices  s.t.  

•        

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

k gets increased here

Greedy Algorithm - Observations



Heuristic Meaning



Coloring
Heuristic + Greedy Algorithm

• For the chosen order of vertices  s.t.  

•        

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

• Pick the order of the vertices using the heuristic :  

•  

• for i = 2 to n do  

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

color the first vertex with color 1 

min color k s.t. it’s not equal to the color of the neighbors of  that are already coloredvi

• Heuristic :  

• Vertex with the smallest degree. Delete   

• Vertex with the smallest degree in the remaining G. Delete  

• Iterate

vn := vn

vn−1 := vn−1



Coloring
Heuristic + Greedy Algorithm  - Observations

• If in every subgraph of G , there exists a vertex with degree  k  

• heuristic provides an order  s.t. the Greedy Algorithm needs 
k+1 colors

≤

v1, . . . vn

• For trees heuristic+greedy finds a coloring with 2 colors 

• For planar graphs heuristic+greedy finds a coloring with  6 colors 

• If G is connected and there exists  with deg(v) <  

heuristic (or bfs/dfs)+ greedy  finds a coloring with  colors 

• If the G is 3-colorable, then one can color it in O(|V| + |E|) time with O( ) colors

≤

v ∈ G Δ(G)

≤ Δ(G)

|V |

it doesn’t hold only when the 
graph is regular:    (deg(v) = ∀v ∈ V
Δ(G)



Coloring
Swapping Color Classes Trick



Articulation Points and Bridges
Definition

• The equivalence classes are named as Blocks

Articulation point is the critical 
point that holds blocks together.  If 
a graph has an articulation point, it 
serves as the only connection 
between two or more blocks. 

2 blocks always 
intersect at an 

articulation point.

Lemma : 



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors

?



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring

• All Graphs  

• can be colored in O(|E|) time with  + 1 colorsΔ(G)

Brook’s Theorem

•   ,    ,  G connected 

• can be colored in O(|E|) time with  colors

G ≠ Kn G ≠ C2n+1

Δ(G)

Brook’s Theorem



Minitest 2 - rest



Questions

Nil Ozer

Feedbacks , Recommendations


