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A&W Overview



Outline

• T1 Discussion  

• Matching Kahoot 

• Coloring 

• Minitest 2 - coloring discussion



• 1.c : Reflexivity argument accepted  

• Watch out for the comments ! 

• Keep up the good work ! 👏👏👏 

• Questions, issues … Let me know ! 

T1
Feedback + Discussion



• Anki card approach changed (instead we have kahoots for now)  

• Matching kahoot this week 

• Cycles + TSP kahoot next week … 

• T2 (peer grading 1) ??  

• Namings:  

• T1(theoretical exercise 1) , T2(peer grading 1), T3(theoretical exercise 2) … 

Some Announcments



Matching Kahoot



Coloring



Coloring
Intuition



edges are our enemies

Coloring
Intuition

Matching Coloring

pairing adjacent vertices 
without conflicts  

(pairing non-adjacent edges) 

seperating adjacent vertices

ensure that selected edges 
don’t touch the same vertex

ensure that the connected 
vertices have distinct colors

edges are our friends
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Coloring
Intuition

pairing adjacent vertices without conflicts  

(pairing non-adjacent edges) 

seperating adjacent vertices

ensure that selected edges don’t touch the 
same vertex

ensure that the connected vertices have 
distinct colors

edges are our friends

k-matched G is also (k-1)-matched (k-1)-colored G is also k-colored

simply remove 1 edge simply change one node’s color

Matching Coloring



Coloring
Definitions

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Color vertices in a way that no two vertices that 
share an edge are of the same color
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Coloring
Definitions

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed 
to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G



Coloring
k-partite

• General version of the bipartite 

• A graph  is called k-partite if  

• the vertex set  can be divided into k disjoint sets  

• s.t. for every edge  ,  and  belong to different sets  and  

where 

G = (V, E)

V V = V1 ∪ V2 ∪ . . . ∪ Vk

(u, v) ∈ E u v Vi Vj

i ≠ j
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Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3 χ(G1) = 2

Do you notice something ? 



Coloring
Problem

For all  ,  given a graph  ,  

is  ? 

k ≥ 3 G = (V, E)

χ(G) ≤ k

NP - Complete



NP-Complete
For all  ,  given a graph  , is  ? k ≥ 3 G = (V, E) χ(G) ≤ k

NP - Complete

A problem a  in NP is NP-complete if : 

P : polynomial  

NP : non-deterministic polynomial

a ∈ P ⟹ P = NP
?

Complexity Theory 
TI next semester 

• NP is the set of decision problems solvable in polynomial time 
by a nondeterministic Turing machine.

• NP is the set of decision problems verifiable in polynomial 
time by a deterministic Turing machine.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Deterministic_Turing_machine


Let’s take a break



• Pick an arbitrary order of the vertices :  

•  

• for i = 2 to n do  

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

Coloring
Greedy Algorithm

color the first vertex with color 1 

min color k s.t. it’s not equal to the color of the neighbors of  that are already coloredvi



Coloring
Greedy Algorithm

c : 

k indexing for colors : 

i 1 2 3 4 5 6 7 8

c[vi]
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Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

✅ 
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c[vi] 1



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

✅ 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1

✅ k = 2 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2

✅ k = 2 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2

k = 2 ✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5
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c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2
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considering ks 
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considering ks 
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Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2 

k = 3 

✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2 

k = 3 

✅ 

k = 4 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1 4

k = 2 

k = 3 

✅ 

k = 4 

done
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• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

Δ(G) := maximum degree in G

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)

Greedy Algorithm - Observations
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• the Greedy Algorithm needs  +1 colors
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Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors 

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)

• There exists bipartite Graphs and order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

|V | / 2

Greedy Algorithm - Observations



Coloring

• For the chosen order of vertices  s.t.  

•        

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

k gets increased here

Greedy Algorithm - Observations



Heuristic Meaning



Coloring
Heuristic + Greedy Algorithm

• For the chosen order of vertices  s.t.  

•        

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

• Pick the order of the vertices using the heuristic :  

•  

• for i = 2 to n do  

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

color the first vertex with color 1 

min color k s.t. it’s not equal to the color of the neighbors of  that are already coloredvi

• Heuristic :  

• Vertex with the smallest degree. Delete   

• Vertex with the smallest degree in the remaining G. Delete  

• Iterate

vn := vn

vn−1 := vn−1



Coloring
Heuristic + Greedy Algorithm  - Observations

• If in every subgraph of G , there exists a vertex with degree  k  

• heuristic provides an order  s.t. the Greedy Algorithm needs 
k+1 colors

≤

v1, . . . vn

• For trees heuristic+greedy finds a coloring with 2 colors 

• For planar graphs heuristic+greedy finds a coloring with  6 colors 

• If G is connected and there exists  with deg(v) <  

heuristic (or bfs/dfs)+ greedy  finds a coloring with  colors 

• If the G is 3-colorable, then one can color it in O(|V| + |E|) time with O( ) colors

≤

v ∈ G Δ(G)

≤ Δ(G)

|V |

it doesn’t hold only when the 
graph is regular:    (deg(v) = ∀v ∈ V
Δ(G)



Coloring
Swapping Color Classes Trick



Articulation Points and Bridges
Definition

• The equivalence classes are named as Blocks

Articulation point is the critical 
point that holds blocks together.  If 
a graph has an articulation point, it 
serves as the only connection 
between two or more blocks. 

2 blocks always 
intersect at an 

articulation point.

Lemma : 



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors
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• G can be colored with k colors



Coloring

• All Graphs  

• can be colored in O(|E|) time with  + 1 colorsΔ(G)

Brook’s Theorem

•   ,    ,  G connected 

• can be colored in O(|E|) time with  colors

G ≠ Kn G ≠ C2n+1

Δ(G)

Brook’s Theorem



Minitest 2 - rest



Questions

Nil Ozer

Feedbacks , Recommendations


