
A&W

Nil Ozer

Exercise Session 4
Matching, TSP II

A&W Overview

Outline

• Minitest II

• Minitest II Discussion

• Matching

• TSP II

Minitest II

Matching

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

✅
1 = {{a,c} , {e,f}}M

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

❌

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• covered (matched) :

• A vertex in a Graph is covered by , if there exists
an edge that contains

v ⊆ V G = (V, E) M
e ∈ M v

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

a b

c d e

f

no two edges share common vertices

• covered (matched) :

• A vertex in a Graph is covered by , if there exists
an edge that contains

v ⊆ V G = (V, E) M
e ∈ M v

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

• equivalently, if

M
M

M =
|V |
2

Matching
Definitions
• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

a b

c d e

f

Is this a perfect matching ?

❌
c

f

a b

d e

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

M
M

Matching
Definitions
• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

M
M

a b

c d e

f

Is this a perfect matching ?

✅
a b

c d e

f

Matching
Definitions
• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

M
M

Is this a perfect matching ?

❌

Matching
Definitions

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′￼

M ⊆ M′￼ |M′￼| > |M |

“no edge can be added to this matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′￼ |M′￼| > |M |

“one can’t find a bigger matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′￼ |M′￼| > |M |

Matching
Definitions

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′￼

M ⊆ M′￼ |M′￼| > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ?

✅ ✅

“no edge can be added to this matching”

“one can’t find a bigger matching”

Matching
Definitions

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′￼

M ⊆ M′￼ |M′￼| > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ?

✅ ❌

“no edge can be added to this matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′￼ |M′￼| > |M |

“one can’t find a bigger matching”

Matching
Propositions

• : inclusion-maximal Matching , : cardinality-maximum MatchingMinc Mmax

|Minc | ≥ |Mmax | / 2
Why ?

Every edge in must have at least one endpoint in

Otherwise, that edge would be added to

Mmax Minc

Minc

|Mmax | ≤ |Endpoints in Minc | = 2 |Minc |

|Minc | ≤ |Mmax |

Matching
Greedy Algorithm

pick an arbitrary edge

remove and all incident edges in e G

|MGreedy | ≥ |Mmax | / 2 is
inclusion-maximal

MGreedy

in O(|E |)

why ?

Matching
Augmenting ?

Matching
M - Augmenting Path

• Augmenting Path :

• An augmenting path is an alternating path that starts from and ends on
unmatched/not covered vertices

“path with edges not in M, in M, … , not in M “

• Alternating Path :

• An alternating path is a path that begins with an unmatched/not
covered vertex whose edges belong alternately to the matching
and not to the matching

Matching
M - Augmenting Path

❌

❌

✅

Is this an augmenting path ?

Idea : By swapping along M
we can improve the
matching

Matching
Swapping ?

A ⊕ B

Elements that are in A or in B but not in both

A = {1,2,3}

B = {3,4,5}
A ⊕ B = {1,2,4,5}

Matching
Swapping ?

 M′￼ := M ⊕ P

— M-augmenting path P

Matching
Berge’s Theorem

A Matching M is

(cardinality-) maximum
There’s no M-augmenting path ⟺

Idea : To find the maximum matching, update/improve the matching until
there is no augmenting path left

Matching
Algorithm

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output : maximum matching M

Algorithm :
Start with M = ∅
while augmenting path ∃ P

M = M ⊕ P
return M

How do we find the
augmenting path ? P

bipartite Gs : with BFS

general Gs in O(|V | |E |)

Matching
Definitions

• Bipartite Graph :

• A graph is bipartite , if you can split the set of vertices into two sets
 s.t. :

G V
U, V

E ⊆ { {u, v} : u ∈ U, v ∈ V}

X

Matching
Definitions

• k-regular

• A graph is k-regular , if every vertex has a degree of k G

deg(v) = k ∀v ∈ V

Matching
Perfect Matching finding

bipartite ? k-regular runtime

✅ 2K O(|E|)

✅ k O(|E|)

✅ - O(|V|·|E|)

Matching
Hall’s Marriage Theorem

A bipartite

has a Matching with cardinality

G = (A ∪ B , E)

M |M | = |A |
∀ X ⊆ A : |X | ≤ |N(X) |⟺

N(X) := “neighbours of vertices in X”

Corollary : Every k-regular bipartite G has a
perfect matching

Matching
Algorithm - revisit

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output : maximum matching M

Algorithm :
Start with M = ∅
while augmenting path ∃ P

M = M ⊕ P
return M

How do we find the
augmenting path ? P

bipartite Gs : with BFS

general Gs in O(|V | |E |)

BFS + this -> O (|V| |E|)

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

L0 := {uncovered vertices from A} A B

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A} A B

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A} A B

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

RESTART

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L0L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 2

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 2

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 2

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 3

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 3

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 3

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Matching
Improvement : Hopcroft Karp Algorithm

Input : A bipartite G = (A ∪ B, E)

Output : Maximum Matching M

Algorithm :

Start with M = ∅
while augmenting path with BFS∃ P

M = M ⊕ P

return M

Hopcroft-Karp :

Start with M = ∅
while augmenting path /∃ P

M = M ⊕ P

k := length of the shortest augmenting path

find more disjoint augmenting paths of length k

until we have a inclusion-maximal set S of those paths

for all P in S :

O(|V|1/2﹒(|V|+|E|))

Let’s take a break

TSP II

Metric TSP : 2-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 2 l(OPT)

where

Metric TSP : 2-Approximation
Algorithm

Metric TSP : 2-Approximation
Algorithm

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

2. Duplicate all edges of T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Correctness

Metric TSP : 2-Approximation

1. Find the MST T

Correctness

l(T) ≤ OPT(Kn , l)

Metric TSP : 2-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Correctness

Metric TSP : 2-Approximation

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Goal :

Metric TSP : 1.5-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 1.5 l(OPT)

where

Metric TSP : 1.5-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 1.5 l(OPT)

where

Metric TSP : 1.5-Approximation
Algorithm

Metric TSP : 1.5-Approximation
Algorithm

Algorithm

1. Find the MST T

Metric TSP : 1.5-Approximation

Algorithm

1. Find the MST T

Metric TSP : 1.5-Approximation

Algorithm

l(T) ≤ OPT(Kn , l)1. Find the MST T

Metric TSP : 1.5-Approximation

Algorithm

l(T) ≤ OPT(Kn , l)1. Find the MST T

2. Duplicate all edges of T 2 l(T) ≤ 2 OPT(Kn , l)

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

Metric TSP : 1.5-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

Metric TSP : 1.5-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

l(M) ≤
1
2

OPT(Kn , l)

Metric TSP : 1.5-Approximation

1. Find the MST T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

Metric TSP : 1.5-Approximation

1. Find the MST T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

l(C) ≤ l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)
why ?

Metric TSP : 1.5-Approximation

Questions

Nil Ozer

Feedbacks , Recommendations

