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if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

no two edges share common vertices
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Definitions

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′￼

M ⊆ M′￼ |M′￼| > |M |

“no edge can be added to this matching”

• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′￼ |M′￼| > |M |

“one can’t find a bigger matching”
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Matching
Propositions

•  : inclusion-maximal Matching ,  : cardinality-maximum MatchingMinc Mmax

|Minc | ≥ |Mmax | / 2
Why ? 

Every edge in  must have at least one endpoint in  

Otherwise, that edge would be added to 

Mmax Minc

Minc

|Mmax | ≤ |Endpoints in Minc | = 2 |Minc |

|Minc | ≤ |Mmax |



Matching
Greedy Algorithm

pick an arbitrary edge

remove  and all incident edges in e G

|MGreedy | ≥ |Mmax | / 2  is 
inclusion-maximal

MGreedy

in O( |E | )

why ? 



Matching
Augmenting ? 



Matching
M - Augmenting Path

• Augmenting Path : 

• An augmenting path is an alternating path that starts from and ends on 
unmatched/not covered vertices

“path with edges not in M, in M, … ,  not in M “ 

• Alternating Path : 

• An alternating path is a path that begins with an unmatched/not 
covered vertex whose edges belong alternately to the matching 
and not to the matching



Matching
M - Augmenting Path

❌ 

❌ 

✅ 

Is this an augmenting path ? 

Idea : By swapping along M 
we can improve the 
matching



Matching
Swapping ? 

A ⊕ B

Elements that are in A or in B but not in both

A = {1,2,3}

B = {3,4,5}
A ⊕ B = {1,2,4,5}



Matching
Swapping ? 

   M′￼ := M ⊕ P

— M-augmenting path P



Matching
Berge’s Theorem

A Matching M is 

(cardinality-) maximum
There’s no M-augmenting path ⟺

Idea : To find the maximum matching, update/improve the matching until 
there is no augmenting path left



Matching
Algorithm

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output  : maximum matching M

Algorithm :  
Start with M = ∅
while  augmenting path ∃ P

M = M ⊕ P
return M

How do we find the 
augmenting path  ? P

bipartite Gs : with BFS 

general Gs  in O( |V | |E | )



Matching
Definitions

• Bipartite Graph :  

• A graph  is bipartite ,  if you can split the set of vertices  into two sets 
 s.t. : 

G V
U, V

E ⊆ { {u, v} : u ∈ U, v ∈ V}

X



Matching
Definitions

• k-regular 

• A graph  is k-regular ,  if every vertex has a degree of k G

deg(v) = k ∀v ∈ V



Matching
Perfect Matching finding

bipartite ? k-regular runtime

✅  2K O(|E|)

✅  k O(|E|)

✅  - O(|V|·|E|)



Matching
Hall’s Marriage Theorem

A bipartite   

has a Matching  with cardinality 

G = (A ∪ B , E)

M |M | = |A |
∀ X ⊆ A : |X | ≤ |N(X) |⟺

N(X) := “neighbours of vertices in X”

Corollary : Every k-regular bipartite G has a 
perfect matching 



Matching
Algorithm - revisit

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output  : maximum matching M

Algorithm :  
Start with M = ∅
while  augmenting path ∃ P

M = M ⊕ P
return M

How do we find the 
augmenting path  ? P

bipartite Gs : with BFS 

general Gs  in O( |V | |E | )

BFS + this -> O (|V| |E|) 



Matching
BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

L0 := {uncovered vertices from A} A B
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BFS for augmenting paths
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Matching
Improvement : Hopcroft Karp Algorithm

Input : A bipartite  G = (A ∪ B, E)

Output  : Maximum Matching M

Algorithm :  

Start with M = ∅
while  augmenting path  with BFS∃ P

M = M ⊕ P

return M

Hopcroft-Karp :  

Start with M = ∅
while  augmenting path /∃ P

M = M ⊕ P

k := length of the shortest augmenting path 

find more disjoint augmenting paths of length k

until we have a inclusion-maximal set S of those paths

for all P in S : 

O(|V|1/2﹒(|V|+|E|))



Let’s take a break



TSP II 



Metric TSP : 2-Approximation
Problem Description

Given : 

To find : 

• A complete Graph Kn of n vertices

• Distances  inbetween every 2 vertexl l : ([n]
2 ) → R

• Hamiltonian Cycle C s.t.  •   satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 2 l(OPT)

where
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3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness
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s.t. each vertex is visited exactly once
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3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ? 

Goal :
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To find : 
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• Hamiltonian Cycle C s.t.  •   satisfies the triangle inequalityl
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OPT =
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l(T) ≤ OPT(Kn , l)1. Find the MST  T

2. Duplicate all edges of T 2 l(T) ≤ 2 OPT(Kn , l)

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM
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1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

l(M) ≤
1
2
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1. Find the MST  T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)
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1. Find the MST  T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

4. Traverse   once using shortcuts 
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

l(C) ≤ l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)
why ? 

Metric TSP : 1.5-Approximation



Questions

Nil Ozer

Feedbacks , Recommendations


