jon 2

Sess

Connectivity

ISE

Exerc

Outline

Minitest

Connectivity

Articulation Points and Bridges

(Cycles)

Minitest

Connectivit Y

L Articwation Poits L Menger's Theorem
> Erdges
> Blode - Decomposition

Cgc\e.s

> (loged Evenan Ul L TSP
> Hamitonian Cﬁd&

Wahrschewlichkeit

s er‘dmtfﬂnﬁe und Nolationen
s 'Bedlrge Wohrscheinlichketen
(s Unabhangigierten

s> Jufallsvariablen

=+ WDidtige Diskrete Verteiungen
‘> Foschatzen von Wohrscheinlichkeiten

A&W Overview

R ondomized %orﬁhms

¢ (0s- Veqas
(> Monte - Carlo

3> '\msesfr Patn Rroolem

. "Prim\\ks Test
> TQ(gd S&‘oo\‘.rs
L ﬂnd\'og Dupl\c_a’(es

Flow

(- Definition

W Maxflow - Mincut
L Ford - Fulkerson

L Machin@ w. Flow
» Ecge'dis\\oitﬂ paths w. Flow

Minmum Cuct
L Deflintion

L Cut(G) Rlgprdhm

suypcbly udool

Conuvex Hull
- Definition

L Jorvis Wrap
L (ocal optimadtion

gmalles’(Endoslrg Circle

@ First Algorithm
@ Fnal Alcorthm
\J

Swypidoly Iuranosl)

o ® m .
Connectivity ~asuring fayq tolerance of ,
"N€twork |

Intuition

How many connections can fail without cutting off the communication ?

CN (4. semester)

Connectivity

Definitions

« AG = (V,E)is connected if

for Vu,v € V,u # v there exists an u-v path

' not connected

Connectivity

Definitions

« AG = (V,E)is connected if

for Vu,v € V,u # v there exists an u-v path

' connected

Connectivity

“Removing”

Remove the edge {a,b}

Connectivity

“Removing”

Remove the edge {a,b}

O— 0 ©

Connectivity

“Removing”

Remove the edge {a,b}

Connectivity

“Removing”

Remove the vertex b

Connectivity

“Removing”

Remove the vertex b

Connectivity

“Removing”

Remove the vertex b

O 0 ©

Connectivity

“Removing”

Remove the vertex b

Connectivity

Definitions

« AG = (V,E)is k-edge connected if
VX C Ewith | X| <k ,G(V,E \ X)is connected

“The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

How to find the k-edge connectivity?

Start from 1-edge connected, increase one by one !

(Every connected G is 1-edge connected)

« AG = (V,E) is k-edge connected if

Con neCtiVity VX C Ewith | X| <k ,G(V,E \ X)is connected

Exa m p I e “ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

« AG = (V,E)is k-edge connected if

Con neCtiVity VX C Ewith | X| <k ,G(V,E \ X)is connected

Exa m p I e “ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

« AG = (V,E) is k-edge connected if

Con neCtiVity VX C Ewith | X| <k ,G(V,E \ X)is connected

Exa m p I e “ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

becomes
disconnected after
removing 1 edge

« AG = (V,E) is k-edge connected if

Con neCtiVity VX C Ewith | X| <k ,G(V,E \ X)is connected

Exa m p I e “ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

« AG = (V,E)is k-edge connected if

Con neCtiVity VX C Ewith | X| <k ,G(V,E \ X)is connected

Exa m p I e “ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

« AG = (V,E) is k-edge connected if

Con neCtiVity VX C Ewith | X| <k ,G(V,E \ X)is connected

Exa m p I e “ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

becomes
disconnected after
removing 2 edges

Connectivity

Definitions

« AG = (V,E)is k- (vertex) connected if
- [V > k+1
. VX C Vwith | X| <k , G[V\X] is connected

“The G remains connected whenever fever than k vertices are removed”

“ At least k vertices must be removed to make the G disconnected”

minitest 8,9

Connectivity

Lemma

k-vertex k-edge minimum
connectivity connectivity degree

IA
IA

minitest 3

Connectivity

Menger’s Theorem

For Vu,v € V,u # v there
G is k-edge connected = exists k edge-disjoint u-v

paths

For Vu,v € V,u # v there
G is k-vertex connected = exists k internally-vertex-disjoint
U'V paths they share the starting

and ending vertex

's take a break

AW © &

WhatsApp group

idges

ints and Br

Articulation Po

Intuition

le points
whose failure
would split the
network into 2 or

sing

Ities In

a network

0O
O
—
QO
-
D)
>

more
components

Articulation Points and Bridges

Definitions

.+ Let G = (V, E) be connected.

A vertex v € Vis an articulation point (cutvertex) iff G[V '\ {v}] is not connected

Articulation Points and Bridges

Definitions

.+ Let G = (V, E) be connected.

A vertex v € Vis an articulation point (cutvertex) iff G[V '\ {v}] is not connected

‘ articulation points

Articulation Points and Bridges

Definitions

.+ Let G = (V, E) be connected.

A vertex v € Vis an articulation point (cutvertex) iff G[V '\ {v}] is not connected

Articulation Points and Bridges

Definitions

.+ Let G = (V, E) be connected.

A vertex v € Vis an articulation point (cutvertex) iff G[V '\ {v}] is not connected

‘ articulation points

Articulation Points and Bridges

Definitions

.+ Let G = (V, E) be connected.

A vertex v € Vis an articulation point (cutvertex) iff G[V '\ {v}] is not connected

Articulation Points and Bridges

Definitions

« Let G = (V, E) be connected.

An edge e € E is a bridge (cutedge) iff G — € is not connected

Articulation Points and Bridges

Definitions

« Let G = (V, E) be connected.

A vertex e € E'is a bridge (cutedge) iff G — € is not connected

‘ bridges

Articulation Points and Bridges

Definitions

« Let G = (V, E) be connected.

A vertex e € E'is a bridge (cutedge) iff G — € is not connected

Articulation Points and Bridges

Definitions

« Let G = (V, E) be connected.

A vertex e € E'is a bridge (cutedge) iff G — € is not connected

‘ bridges

Articulation Points and Bridges

Definitions

« Let G = (V, E) be connected.

A vertex e € E'is a bridge (cutedge) iff G — € is not connected

Articulation Points and Bridges

Lemma

+ Let G = (V, E) be a connected graph.

deg(x) =1
{X,y} € Lisa bridge = o)

;!

X I1s an articulation point

minitest 2

Articulation Points and Bridges

Definition

+ Let G = (V, E) be a graph.

The equivalence relation ~ on £ is defined as :

{e=f or
e~f =

l e and f are on a common cycle

minitest 5

« Let G = (V, E) be a graph.

Articulation Points and Bridges

Definition s

e Nf ==
l e and fare on a common cycle

The equivalence relation ~ on E'is defined as :

- The equivalence classes are named as Blocks

Lemma :

-~ 2 blocks always

‘ Intersect at an
articulation point.

Articulation point is the critical
point that holds blocks together. If
a graph has an articulation point, it
serves as the only connection
between two or more blocks.

Articulation Points and Bridges

Definition

« Let G = (V, E) be connected
The Block-Graph of G is the bipartite Graph 1 = (A © B, ET) with

« A ={Articulation points of G}
« B={Blockof G}

- YaeA,beB:{a,b} € E; < aisincidenttoanedgeinb

el S ae

Articulation Points and Bridges

Lemma

Let G = (V, E) be connected
The Block-Graph of G is the bipartite Graph 1T = (A W B, ET) with

A = {Articulation points of G}

B = {Block of G}

VaeA,beB: {a,b} € E; < aisincidenttoanedgeinb O/O\O/Q/O/g\g

If G is connected, then the Block-Graph of G is a tree

Articulation Points and Bridges

Finding articulation points

BFS-VISIT-ITERATIVE(G, v)

1 Q<+« 0

2 Markiere v als aktiv

3 ENQUEUE(Q,v)

4 while Q # () do

5 w < DEQUEUE(Q)
Markiere w als besucht
for each (w,z) € E do

shortest paths

6
7
8 if nicht aktiv und z noch nicht besucht then
9

Markiere z als aktiv
10 ENQUEUE(Q, x)

articulation points

DFS-VisIT-ITERATIVE(G, v)

1 S« 0
2 PusH(S,v)
3 while S # () do

4

O 00~ O O

w + Pop(S5)
if w noch nicht besucht then
Markiere w als besucht
for each (w,z) € E in reverse order do

if £ noch nicht besucht then
PusH(S, z)

Queue:
First-in-first-out

Stack:
Last-in-first-out

I

W

‘\\

Articulation Points and Bridges

Finding articulation points

DFS-ViISIT-ITERATIVE(G, v)

1 S0

2 PusH(S,v)

3 while S # 0 do

4 w < Pop(S)

if w noch nicht besucht then + Ca ICU Iate |OW[V]
Markiere w als besucht
for each (w,z) € E in reverse order do

if £ noch nicht besucht then
PuUsH(S, z)

O 0~ O O

Articulation Points and Bridges

Finding articulation points

DFS-VISIT-ITERATIVE(G, v)
Calculate low]|V]
1 S« 0

2 PUsH(S,v)

3 while S # 0 do
1 w < PoP(S)

low|Vv] := the smallest dfs-number

if x noch nicht besucht then
PusH(S, z)

5) if w noch nicht besucht then T that one can reaCh fI‘Om V W|th d
6 Markiere w als besuch . . .

7 for each (w,z) € E ixf reverse order do dlreCted path COnSIStIng Of (any
8

9

number of) tree edges and
maximum one remaining edge .

Articulation Points and Bridges

Finding articulation points

DFS-VISIT-ITERATIVE(G, v)

1 S0

2 PusH(S,v)

3 while S # 0 do

4 w < Pop(S)

6t if w noch nicht besucht then

6 Markiere w als besucht

7 for each (w,z) € E in reverse order do
8 if z noch nicht besucht then

9 PusH(S, z)

Calculate low]|V]

low|Vv] := the smallest dfs-number
that one can reach from v with a
directed path consisting of (any
number of) tree edges and
maximum one remaining edge .

Articulation Points and Bridges

Finding articulation points

DFS-VISIT-ITERATIVE(G, v)

1 S0

2 PusH(S,v)

3 while S # 0 do

4 w < Pop(S)

6t if w noch nicht besucht then

6 Markiere w als besucht

7 for each (w,z) € E in reverse order do
8 if z noch nicht besucht then

9 PusH(S, z)

Calculate low]|V]

low|Vv] := the smallest dfs-number
that one can reach from v with a
directed path consisting of (any
number of) tree edges and
maximum one remaining edge .

Articulation Points and Bridges

Finding articulation points

root

1) Find DFS numbers

«DFS from A&D

epre-number from A&D is

now the DFS number

-back edge/forward edge/
cross edge are now all
remaining edges

Articulation Points and Bridges

Finding articulation points

. (€€ €0 QES
(--------------- remaining edges

2) Orientation

- tree edges in the
increasing dfs-number
direction

‘remaining edges in
decreasing dfs-number
direction

Articulation Points and Bridges

Finding articulation points dfs / low

1110

3) Calculate low|V]

low|v| = min (dfs['u], min {

(v,w)eEFR

dfs[w], if (vw) is a remaining edge
low|w|, if (v,w) is a tree edge

Articulation Points and Bridges

Finding articulation points

dfs / low | |
A vertex v is an articulation point iff

1) v #rootand v hasachilduin
DFS-Tree with low|u]| > dfs|v]| or

2) v =root and v has at least 2
children in DFS-Tree

11/10

Articulation Points and Bridges

Finding articulation points

dfs / low

A tree edge e =(v,w) is a bridge iff

low[w] > dfs|V]

Remaining edges can never be a bridge

11/10

Closed « A sequence of vertices (vg, vy, ..., vk) is a closed walk (german “Zyklus”) if it is a walk, & > 2

Cyc I eS walk and vy = vj.

« A sequence of vertices (vg, v1,. .., Vi) is a cycle (german “Kreis”) if it is a closed walk, k& > 3

iNniti Cycle
D efl ni t I0ONS Y and all vertices (except vg and vg) are distinct.

« Hamlitonian Cycle

» A cycle in G that contains every vertex exactly once

» Eulerian Cycle

- A closed walk in G that contains every edge exactly once

minitest 4,6,/

CYCIeS « Hamlitonian Cycle

Ha miItOnia n Cycle Exa m ples - A cycle in G that contains every vertex exactly once

|lkosaeder Petersengraph

CYCIeS « Hamlitonian Cycle

Ha miltonia n Cycle Exa m ples « A cycle in G that contains every vertex exactly once

lkosaeder Petersengraph

X

CYCIeS « Hamlitonian Cycle

Ha miltonia n Cycle Exa m ples « A cycle in G that contains every vertex exactly once

Grid Graph

Letm,n > 2

A n x m Grid has a hamiltonian cycle iff n x m is even

Cycles

Hamiltonian Cycle Examples

d-dimensional Hypercube H

V :={0,1}d

E := “All vertex pairs that differ in only one coordinate”

d=2:

« Hamlitonian Cycle

« A cycle in G that contains every vertex exactly once

d=3- 110 111
10‘ 11‘ /7
010
| — | 101
00 01 — /'
'_-
000 001

Has a hamiltonian cycle for all d > 2

1I0NS

e
O
d
 w
D
=
=
O
&
QD
a '
92,

