
A&W

All Slides
Nil Ozer

A&W

Nil Ozer

Exercise Session 1
Introduction

Outline
• Logistics

• A&W Overview

• Exam

• How to study for A&W

• Get to know me/you

• Warm up exercise

Logistics

• Exercise Session here and on wednesday only for today !!

• Normally : Thursdays, 16:15 - 18:00 , HG E 33.1

Logistics

• Programming Exercise

• Every week, starting on 2. week

• CodeExpert

• 2 points, automatically graded

• Theory Exercise

• Even weeks, starting on the 2. week

• until 10:00 on the following Thursday

• 2 points, TA graded

• Peer Grading Exercise

• Odd weeks, starting on the 3. week

• 2 points (upload + peer grading), TA graded

• Mini Quiz

• Even weeks, starting on the 2. week

• First ~5 min of the exercise class

• 2 points

Logistics

W1 Warm up exercise

W2 Mini Quiz Theory Exercise Programming
Exercise

W3 Peer Grading
Exercise

Programming
Exercise

W4 Mini Quiz Theory Exercise Programming
Exercise

W5 Peer Grading
Exercise

Programming
Exercise

W6 Mini Quiz Theory Exercise Programming
Exercise

W7 Peer Grading
Exercise

Programming
Exercise

…

Logistics
• Bonus Point Calculation

• >= %80 of all points -> 0.25 bonus

• Otherwise :

• Final Grade Calculation

Website Introduction
www.nilozer.com

http://www.nilozer.com

A&W Overview

A&W Standpoint at ETH CS

• Algorithms Part

• A&D (1. Semester)

• APC (Algorithms , Probability and Computing) (5. Semester)

• Probability Part

• WuS (Wahrscheinlichkeit und Statistik) (4. Semester)

Exam

Exam

Exam

6 Parts
First 4 parts : each 10 points (similar to minitest)

Part 5 : written tasks, 20 points in total (similar to theory exercises)

Part 6 : 2 programming tasks, each 10 points (similar to CodeEx)

Exam

Moodle Written Theory Programming

Mock Exam 2022

Moodle ~1 points

Mock Exam 2022

Moodle
~5 points

Mock Exam 2022

Moodle
~5 points

Mock Exam 2022

Moodle
~2 points

Mock Exam 2022

Moodle
~2 points

Mock Exam 2022

Written Theory

on paper

Mock Exam 2022

Programming

• One probability task

• One flow task
~10 points each

Point Distribution

Moodle

Programming

Written Theory

based on mock exam

25%

25%

50%

Point Distribution + Weekly Exercises

W1 Warm up exercise

W2 Mini Quiz Theory Exercise Programming
Exercise

W3 Peer Grading
Exercise

Programming
Exercise

W4 Mini Quiz Theory Exercise Programming
Exercise

W5 Peer Grading
Exercise

Programming
Exercise

W6 Mini Quiz Theory Exercise Programming
Exercise

W7 Peer Grading
Exercise

Programming
Exercise

Point Distribution + Weekly Exercises

Moodle Written + Moodle Programming

W1 Warm up exercise

W2 Mini Quiz Theory Exercise Programming Exercise

W3 Peer Grading Exercise Programming Exercise

W4 Mini Quiz Theory Exercise Programming Exercise

W5 Peer Grading Exercise Programming Exercise

W6 Mini Quiz Theory Exercise Programming Exercise

W7 Peer Grading Exercise Programming Exercise

I got you !

How to study for A&W
During Semester

• Attend all lectures !

• Skript ! Some recap parts from A&D in the beginning

• Always come to the exercise session. Even if you fall back !

• Try to solve all exercises (of all types) Coding weekly !

• Ask questions ! exercise session , breaks, WhatsApp group, email , Moodle forum

• Summaries, Recaps

• Feedback Feedback pools by me or contacting me directly

Get to know me

Get to know you

Join the whatsapp group !

Let’s take a break

Warm up Exercise Sheet

Recap
Walk vs Path

1

52

3

4

walk

path

Is it a walk? Is it a path?

(5, 1, 3, 2, 1)

(5, 1, 3)

✅ ❌

✅ ✅

Warm up Exercise Sheet

Paths of length 4 (i.e. with 4 edges) from a to e ?

Exercise 1 : Paths, Walks, Circles

⟨a,b,c,f,e⟩

Paths of length 4 (i.e. with 4 edges) from a to e ?

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

Walks of length 4 (i.e. with 4 edges) from a to e ?

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

⟨a,b,c,f,e⟩, ⟨a,b,c,b,e⟩, ⟨a,b,e,d,e⟩, ⟨a,b,e,f,e⟩, ⟨a,b,e,b,e⟩, ⟨a,b,a,b,e⟩, ⟨a, b,
a,d,e⟩, ⟨a,d,a,d,e⟩, ⟨a,d,a,b,e⟩, ⟨a,d,e,d,e⟩, ⟨a,d,e,b,e⟩, ⟨a,d,e,f,e⟩

Walks of length 4 (i.e. with 4 edges) from a to e ?

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

Recap
Closed Walk vs Cycle

1

52

3

4

walk

Cycle

Is it a closed walk? Is it a cycle?

(5, 1, 3, 1, 5)

(1, 3, 2, 1)

✅ ❌

✅ ✅

Closed

Cycles in G ?

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

Cycles in G ?

⟨a,b,d,e,a⟩, ⟨b,c,f,e,b⟩ and ⟨a,b,c,f,e,d,a⟩

+ changing the starting points !

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

Closed Walks in G ?

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

Closed Walks in G ?

Infinitely many

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles

Warm up Exercise Sheet
Exercise 2 : Asymptotic Growth

Recap
Mini cheat-sheet

Sums

Factorial

Geometric series : From Exercise Sheet 1 :

Warm up Exercise Sheet
Exercise 3 : Induction

Warm up Exercise Sheet
Exercise 4 : A General Feature of Graphs

Warm up Exercise Sheet
Exercise 5 : Algorithms

A&W

Nil Ozer

Exercise Session 2
Connectivity

Outline
• Minitest

• Connectivity

• Articulation Points and Bridges

• (Cycles)

Minitest

A&W Overview

Connectivity

Connectivity
Intuition

How many connections can fail without cutting off the communication ?

measuring fault tolerance of a network !

CN (4. semester)

Connectivity
Definitions

• A is connected if

for there exists an u-v path

G = (V, E)

∀u, v ∈ V, u ≠ v

not connected

Connectivity
Definitions

• A is connected if

for there exists an u-v path

G = (V, E)

∀u, v ∈ V, u ≠ v

connected

Connectivity
“Removing”

a b c

Remove the edge {a,b}

Connectivity
“Removing”

a b c

Remove the edge {a,b}

Connectivity
“Removing”

a b c

Remove the edge {a,b}

Connectivity
“Removing”

a b c

Remove the vertex b

Connectivity
“Removing”

a b c

Remove the vertex b

Connectivity
“Removing”

a b c

Remove the vertex b

Connectivity
“Removing”

a c

Remove the vertex b

Connectivity
Definitions

• A is k-edge connected if

 with , is connected

G = (V, E)

∀X ⊆ E |X | < k G(V, E ∖ X)

“ The G remains connected whenever fever than k edges are removed”

“ At least k edges must be removed to make the G disconnected”

Connectivity
Example

Connectivity
Example

1-edge connected

Connectivity
Example

1-edge connected

becomes
disconnected after
removing 1 edge

Connectivity
Example

Connectivity
Example

2-edge connected

Connectivity
Example

2-edge connected

becomes
disconnected after
removing 2 edges

Connectivity
Definitions

• A is k - (vertex) connected if

•

• with , is connected

G = (V, E)

|V | ≥ k + 1

∀X ⊆ V |X | < k G[V∖X]

“ The G remains connected whenever fever than k vertices are removed”

“ At least k vertices must be removed to make the G disconnected”

minitest 8,9

Connectivity
Lemma

k-vertex
connectivity ≤ k-edge

connectivity
minimum

degree≤

minitest 3

Connectivity
Menger’s Theorem

G is k-edge connected ⟺
For there
exists k edge-disjoint u-v

paths

∀u, v ∈ V, u ≠ v

G is k-vertex connected ⟺
For there

exists k internally-vertex-disjoint
u-v paths

∀u, v ∈ V, u ≠ v

they share the starting
and ending vertex

Let’s take a break

Articulation Points and Bridges
Intuition

vulnerabilities in
a network

single points
whose failure

would split the
network into 2 or

more
components

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is an articulation point (cut vertex) iff is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]

Articulation Points and Bridges
Definitions

articulation points

• Let be connected.

A vertex is an articulation point (cut vertex) iff is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is an articulation point (cut vertex) iff is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]

Articulation Points and Bridges
Definitions

articulation points

• Let be connected.

A vertex is an articulation point (cut vertex) iff is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is an articulation point (cut vertex) iff is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]

Articulation Points and Bridges
Definitions

• Let be connected.

An edge is a bridge (cut edge) iff is not connected

G = (V, E)

e ∈ E G − e

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is a bridge (cut edge) iff is not connected

G = (V, E)

e ∈ E G − e

bridges

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is a bridge (cut edge) iff is not connected

G = (V, E)

e ∈ E G − e

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is a bridge (cut edge) iff is not connected

G = (V, E)

e ∈ E G − e

bridges

Articulation Points and Bridges
Definitions

• Let be connected.

A vertex is a bridge (cut edge) iff is not connected

G = (V, E)

e ∈ E G − e

Articulation Points and Bridges
Lemma

• Let be a connected graph.G = (V, E)

 is a bridge{x, y} ∈ E ⇒
deg(x) = 1

or

x is an articulation point

minitest 2

Articulation Points and Bridges
Definition

• Let be a graph.

The equivalence relation on is defined as :

G = (V, E)

∼ E

e ∼ f :=
e = f

 and are on a common cycle e f

or

minitest 5

Articulation Points and Bridges
Definition

• The equivalence classes are named as Blocks

Articulation point is the critical
point that holds blocks together. If
a graph has an articulation point, it
serves as the only connection
between two or more blocks.

2 blocks always
intersect at an

articulation point.

Lemma :

Articulation Points and Bridges
Definition

• Let be connected

The Block-Graph of G is the bipartite Graph with

• A = {Articulation points of G}

• B = {Block of G }

• is incident to an edge in

G = (V, E)

T = (A ⊎ B, ET)

∀a ∈ A, b ∈ B : {a, b} ∈ ET ⟺ a b

Articulation Points and Bridges
Lemma

• Let be connected

The Block-Graph of G is the bipartite Graph with

• A = {Articulation points of G}

• B = {Block of G }

• is incident to an edge in

G = (V, E)

T = (A ⊎ B, ET)

∀a ∈ A, b ∈ B : {a, b} ∈ ET ⟺ a b

If G is connected , then the Block-Graph of G is a tree

Articulation Points and Bridges
Finding articulation points

shortest paths

articulation points

Articulation Points and Bridges
Finding articulation points

+ Calculate low[v]

Articulation Points and Bridges
Finding articulation points

+

Calculate low[v]

low[v] := the smallest dfs-number
that one can reach from v with a
directed path consisting of (any
number of) tree edges and
maximum one remaining edge .

Articulation Points and Bridges
Finding articulation points

+

Calculate low[v]

low[v] := the smallest dfs-number
that one can reach from v with a
directed path consisting of (any
number of) tree edges and
maximum one remaining edge .

Articulation Points and Bridges
Finding articulation points

+

Calculate low[v]

low[v] := the smallest dfs-number
that one can reach from v with a
directed path consisting of (any
number of) tree edges and
maximum one remaining edge .

Articulation Points and Bridges
Finding articulation points

•DFS from A&D

•pre-number from A&D is
now the DFS number

•back edge/forward edge/
cross edge are now all
remaining edges

1) Find DFS numbers

Articulation Points and Bridges
Finding articulation points

• tree edges in the
increasing dfs-number
direction

•remaining edges in
decreasing dfs-number
direction

tree edges
remaining edges

2) Orientation

Articulation Points and Bridges
Finding articulation points

if (v,w) is a remaining edge

if (v,w) is a tree edge

3) Calculate low[v]

Articulation Points and Bridges
Finding articulation points

A vertex v is an articulation point iff

1) v ≠ root and v has a child u in
DFS-Tree with low[u] ≥ dfs[v] or

2) v = root and v has at least 2
children in DFS-Tree

Articulation Points and Bridges
Finding articulation points

A tree edge e = (v,w) is a bridge iff

low[w] > dfs[v]

Remaining edges can never be a bridge

Cycles

Cycles
Definitions

• Hamlitonian Cycle

• A cycle in G that contains every vertex exactly once

• Eulerian Cycle

• A closed walk in G that contains every edge exactly once

minitest 4,6,7

Cycles
Hamiltonian Cycle Examples

Cycles
Hamiltonian Cycle Examples

Cycles
Hamiltonian Cycle Examples

Grid Graph

Let m, n ≥ 2

A x Grid has a hamiltonian cycle iff x is even n m n m

Cycles
Hamiltonian Cycle Examples

d-dimensional Hypercube Hd

V := {0,1}d

E := “All vertex pairs that differ in only one coordinate”

Has a hamiltonian cycle for all d ≥ 2

A&W

Nil Ozer

Exercise Session 3
Cycles , TSP

A&W Overview

Outline

• Some logistics

• Connectivity Kahoot

• Cycles

• TSP

• For every exercise, you’ll receive feedback from me on the exercise
session next week !

• Anki cards

• CodeExpert videos

• Regular recap kahoots in class on the weeks without the minitest

Logistics

Connectivity Kahoot

Cycles

Cycles
Definitions

• Hamlitonian Cycle

• A cycle in G that contains every vertex exactly once

• Eulerian Cycle

• A closed walk in G that contains every edge exactly once

Cycles
Hamiltonian Cycle Examples

Cycles
Hamiltonian Cycle Examples

Cycles
Hamiltonian Cycle Examples

Grid Graph

Let m, n ≥ 2

A x Grid has a hamiltonian cycle iff x is even n m n m

Cycles
Hamiltonian Cycle Examples

d-dimensional Hypercube Hd

V := {0,1}d

E := “All vertex pairs that differ in only one coordinate”

Has a hamiltonian cycle for all d ≥ 2

Eulerian Cycle
Lemma

A connected G has a
eulerian Cycle

⟺ Every vertex has an even
degree

Let’s take a break

Hamiltonian Cycle

Given a Graph , does G have a hamiltonian cycle ? G = (V, E)

NP - Complete

NP-Complete
Given a Graph , does G have a hamiltonian cycle ? G = (V, E)

NP - Complete

A problem a in NP is NP-complete if :

P : polynomial

NP : non-deterministic polynomial

a ∈ P ⟹ P = NP
?

Complexity Theory
TI next semester

• NP is the set of decision problems solvable in polynomial time
by a nondeterministic Turing machine.

• NP is the set of decision problems verifiable in polynomial
time by a deterministic Turing machine.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Deterministic_Turing_machine

Hamiltonian Cycle
Dirac’s Theorem

A G has a hamiltonian
cycle⟹ and

the minimum degree

|V | ≥ 3

δ(G) ≥ |V | /2

Hamiltonian Cycle
DP Approach

P[S][x] =
1 , if there exists a 1-x-path that only uses vertices from S

0 , else

For all with and all with S ⊆ [n] 1 ∈ S x ∈ S x ≠ 1 :

P[{1,x}][x] = 1 iff { 1,x } E ∈Initialization :

TSP

TSP
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• “shortest round trip”

∑
e∈E(H)

l(e)min
H : Hamiltonian Cycle

also NP-Complete

Metric TSP
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• “shortest round trip”

∑
e∈E(H)

l(e)min
H : Hamiltonian Cycle

• satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

Metric TSP : 2-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 2 l(OPT)

where

Metric TSP : 2-Approximation
Algorithm

Metric TSP : 2-Approximation
Algorithm

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

2. Duplicate all edges of T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Correctness

Metric TSP : 2-Approximation

1. Find the MST T

Correctness

l(T) ≤ OPT(Kn , l)

Metric TSP : 2-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Correctness

Metric TSP : 2-Approximation

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Goal :

A&W

Nil Ozer

Exercise Session 4
Matching, TSP II

Minitest II

A&W Overview

Outline

• Minitest II

• Minitest II Discussion

• Matching

• TSP II

Matching

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

✅
1 = {{a,c} , {e,f}}M

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

❌

Matching
Definitions

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• covered (matched) :

• A vertex in a Graph is covered by , if there exists
an edge that contains

v ⊆ V G = (V, E) M
e ∈ M v

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

a b

c d e

f

no two edges share common vertices

• covered (matched) :

• A vertex in a Graph is covered by , if there exists
an edge that contains

v ⊆ V G = (V, E) M
e ∈ M v

Matching
Definitions

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

• equivalently, if

M
M

M =
|V |
2

Matching
Definitions
• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

a b

c d e

f

Is this a perfect matching ?

❌
c

f

a b

d e

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

M
M

Matching
Definitions
• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

M
M

a b

c d e

f

Is this a perfect matching ?

✅
a b

c d e

f

Matching
Definitions
• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching :

• A Matching is called a Perfect Matching if every vertex is covered
by exactly one edge from

M
M

Is this a perfect matching ?

❌

Matching
Definitions

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′

M ⊆ M′ |M′ | > |M |

“no edge can be added to this matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′ |M′ | > |M |

Matching
Definitions

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ?

✅ ✅

“no edge can be added to this matching”

“one can’t find a bigger matching”

Matching
Definitions

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ?

✅ ❌

“no edge can be added to this matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”

Matching
Propositions

• : inclusion-maximal Matching , : cardinality-maximum MatchingMinc Mmax

|Minc | ≥ |Mmax | / 2
Why ?

Every edge in must have at least one endpoint in

Otherwise, that edge would be added to

Mmax Minc

Minc

|Mmax | ≤ |Endpoints in Minc | = 2 |Minc |

|Minc | ≤ |Mmax |

Matching
Greedy Algorithm

pick an arbitrary edge

remove and all incident edges in e G

|MGreedy | ≥ |Mmax | / 2 is
inclusion-maximal

MGreedy

in O(|E |)

why ?

Matching
Augmenting ?

Matching
M - Augmenting Path

• Augmenting Path :

• An augmenting path is an alternating path that starts from and ends on
unmatched/not covered vertices

“path with edges not in M, in M, … , not in M “

• Alternating Path :

• An alternating path is a path that begins with an unmatched/not
covered vertex whose edges belong alternately to the matching
and not to the matching

Matching
M - Augmenting Path

❌

❌

✅

Is this an augmenting path ?

Idea : By swapping along M
we can improve the
matching

Matching
Swapping ?

A ⊕ B

Elements that are in A or in B but not in both

A = {1,2,3}

B = {3,4,5}
A ⊕ B = {1,2,4,5}

Matching
Swapping ?

 M′ := M ⊕ P

— M-augmenting path P

Matching
Berge’s Theorem

A Matching M is

(cardinality-) maximum
There’s no M-augmenting path ⟺

Idea : To find the maximum matching, update/improve the matching until
there is no augmenting path left

Matching
Algorithm

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output : maximum matching M

Algorithm :
Start with M = ∅
while augmenting path ∃ P

M = M ⊕ P
return M

How do we find the
augmenting path ? P

bipartite Gs : with BFS

general Gs in O(|V | |E |)

Matching
Definitions

• Bipartite Graph :

• A graph is bipartite , if you can split the set of vertices into two sets
 s.t. :

G V
U, V

E ⊆ { {u, v} : u ∈ U, v ∈ V}

X

Matching
Definitions

• k-regular

• A graph is k-regular , if every vertex has a degree of k G

deg(v) = k ∀v ∈ V

Matching
Perfect Matching finding

bipartite ? k-regular runtime

✅ 2K O(|E|)

✅ k O(|E|)

✅ - O(|V|·|E|)

Matching
Hall’s Marriage Theorem

A bipartite

has a Matching with cardinality

G = (A ∪ B , E)

M |M | = |A |
∀ X ⊆ A : |X | ≤ |N(X) |⟺

N(X) := “neighbours of vertices in X”

Corollary : Every k-regular bipartite G has a
perfect matching

Matching
Algorithm - revisit

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output : maximum matching M

Algorithm :
Start with M = ∅
while augmenting path ∃ P

M = M ⊕ P
return M

How do we find the
augmenting path ? P

bipartite Gs : with BFS

general Gs in O(|V | |E |)

BFS + this -> O (|V| |E|)

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

L0 := {uncovered vertices from A} A B

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A} A B

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A} A B

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

RESTART

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then

if i is even then

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L0L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 2

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 2

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 2

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 3

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 3

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 3

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 5

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L4
L5

L0

Matching
BFS for augmenting paths

Input : A bipartite , Matching G = (A ∪ B, E) M

Output : (shortest) augmenting path (if there is one)

Algorithm :

Mark L0 as visited

L0 := {uncovered vertices from A}
A B

for i = 1 to n

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Matching
Improvement : Hopcroft Karp Algorithm

Input : A bipartite G = (A ∪ B, E)

Output : Maximum Matching M

Algorithm :

Start with M = ∅
while augmenting path with BFS∃ P

M = M ⊕ P

return M

Hopcroft-Karp :

Start with M = ∅
while augmenting path /∃ P

M = M ⊕ P

k := length of the shortest augmenting path

find more vertex disjoint augmenting paths of length k

until we have a inclusion-maximal set S of those paths

for all P in S :

O(|V|1/2﹒(|V|+|E|))

Let’s take a break

TSP II

Metric TSP : 2-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 2 l(OPT)

where

Metric TSP : 2-Approximation
Algorithm

Metric TSP : 2-Approximation
Algorithm

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T

2. Duplicate all edges of T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

start

Metric TSP : 2-Approximation
Algorithm

1. Find the MST T1. Find the MST T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse once using
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C

Metric TSP : 2-Approximation
Correctness

Metric TSP : 2-Approximation

1. Find the MST T

Correctness

l(T) ≤ OPT(Kn , l)

Metric TSP : 2-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Correctness

Metric TSP : 2-Approximation

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Metric TSP : 2-Approximation

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ?

Goal :

Metric TSP : 1.5-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 1.5 l(OPT)

where

Metric TSP : 1.5-Approximation
Problem Description

Given :

To find :

• A complete Graph Kn of n vertices

• Distances inbetween every 2 vertexl l : ([n]
2) → R

• Hamiltonian Cycle C s.t. • satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 1.5 l(OPT)

where

Metric TSP : 1.5-Approximation
Algorithm

Metric TSP : 1.5-Approximation
Algorithm

Algorithm

1. Find the MST T

Metric TSP : 1.5-Approximation

Algorithm

1. Find the MST T

Metric TSP : 1.5-Approximation

Algorithm

l(T) ≤ OPT(Kn , l)1. Find the MST T

Metric TSP : 1.5-Approximation

Algorithm

l(T) ≤ OPT(Kn , l)1. Find the MST T

2. Duplicate all edges of T 2 l(T) ≤ 2 OPT(Kn , l)

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

Metric TSP : 1.5-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

Metric TSP : 1.5-Approximation

2. Duplicate all edges of T

1. Find the MST T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

l(M) ≤
1
2

OPT(Kn , l)

Metric TSP : 1.5-Approximation

1. Find the MST T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

Metric TSP : 1.5-Approximation

1. Find the MST T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in T
Find minimal Matching for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

4. Traverse once using shortcuts
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

l(C) ≤ l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)
why ?

Metric TSP : 1.5-Approximation

A&W

Nil Ozer

Exercise Session 5
Coloring

A&W Overview

Outline

• T1 Discussion

• Matching Kahoot

• Coloring

• Minitest 2 - coloring discussion

• 1.c : Reflexivity argument accepted

• Watch out for the comments !

• Keep up the good work ! 👏👏👏

• Questions, issues … Let me know !

T1
Feedback + Discussion

• Anki card approach changed (instead we have kahoots for now)

• Matching kahoot this week

• Cycles + TSP kahoot next week …

• T2 (peer grading 1) ??

• Namings:

• T1(theoretical exercise 1) , T2(peer grading 1), T3(theoretical exercise 2) …

Some Announcments

Matching Kahoot

Let’s take a break

Coloring

Coloring
Intuition

edges are our enemies

Coloring
Intuition

Matching Coloring

pairing adjacent vertices
without conflicts

(pairing non-adjacent edges)

seperating adjacent vertices

ensure that selected edges
don’t touch the same vertex

ensure that the connected
vertices have distinct colors

edges are our friends

edges are our enemies

Coloring
Intuition

pairing adjacent vertices without conflicts

(pairing non-adjacent edges)

seperating adjacent vertices

ensure that selected edges don’t touch the
same vertex

ensure that the connected vertices have
distinct colors

edges are our friends

k-matched G is also (k-1)-matched (k-1)-colored G is also k-colored

simply remove 1 edge simply change one node’s color

Matching Coloring

Coloring
Definitions

• (Vertex-) Coloring :

• A (vertex-) coloring of with k colors is a mapping
 s.t. for all edges

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Color vertices in a way that no two vertices that
share an edge are of the same color

Coloring
Examples

• (Vertex-) Coloring :

• A (vertex-) coloring of with k colors is a mapping
 s.t. for all edges

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ?

Coloring
Examples

• (Vertex-) Coloring :

• A (vertex-) coloring of with k colors is a mapping
 s.t. for all edges

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ?

✅

Coloring
Examples

• (Vertex-) Coloring :

• A (vertex-) coloring of with k colors is a mapping
 s.t. for all edges

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ?

✅

Coloring
Examples

• (Vertex-) Coloring :

• A (vertex-) coloring of with k colors is a mapping
 s.t. for all edges

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ?

❌

Coloring
Definitions

• (Vertex-) Coloring :

• A (vertex-) coloring of with k colors is a mapping
 s.t. for all edges

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

• Chromatic Number :

• The chromatic number is the minimum number of colors needed
to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

Coloring
k-partite

• General version of the bipartite

• A graph is called k-partite if

• the vertex set can be divided into k disjoint sets

• s.t. for every edge , and belong to different sets and

where

G = (V, E)

V V = V1 ∪ V2 ∪ . . . ∪ Vk

(u, v) ∈ E u v Vi Vj

i ≠ j

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3 χ(G1) = 2

Coloring
Examples
• Chromatic Number :

• The chromatic number is the minimum number of colors needed to color a graph

• equivalent : is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3 χ(G1) = 2

Do you notice something ?

Coloring
Problem

For all , given a graph ,

is ?

k ≥ 3 G = (V, E)

χ(G) ≤ k

NP - Complete

NP-Complete
For all , given a graph , is ? k ≥ 3 G = (V, E) χ(G) ≤ k

NP - Complete

A problem a in NP is NP-complete if :

P : polynomial

NP : non-deterministic polynomial

a ∈ P ⟹ P = NP
?

Complexity Theory
TI next semester

• NP is the set of decision problems solvable in polynomial time
by a nondeterministic Turing machine.

• NP is the set of decision problems verifiable in polynomial
time by a deterministic Turing machine.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Deterministic_Turing_machine

• Pick an arbitrary order of the vertices :

•

• for i = 2 to n do

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

Coloring
Greedy Algorithm

color the first vertex with color 1

min color k s.t. it’s not equal to the color of the neighbors of that are already coloredvi

Coloring
Greedy Algorithm

c :

k indexing for colors :

i 1 2 3 4 5 6 7 8

c[vi]

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

c :
i 1 2 3 4 5 6 7 8

c[vi]

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

c :
i 1 2 3 4 5 6 7 8

c[vi] 1

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

✅

c :
i 1 2 3 4 5 6 7 8

c[vi] 1

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

✅

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1

✅ k = 2

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2

✅ k = 2

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2

k = 2 ✅

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2

k = 2 ✅

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2

k = 2 ✅

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2

k = 2 ✅

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2

k = 2

✅ k = 3

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3

k = 2

✅ k = 3

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3

k = 2

k = 3

✅

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2

k = 3

✅

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2

k = 3

✅

k = 4

Coloring
Greedy Algorithm

k indexing for colors :

1

2

3

4

5

6

7

8

k = 1

considering ks

c :
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1 4

k = 2

k = 3

✅

k = 4

done

Coloring

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

Δ(G) := maximum degree in G

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G)

Greedy Algorithm - Observations

Coloring

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G) is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G

Coloring

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G) is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G

Coloring

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G) is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G

Coloring

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G) is k-partiteχ(G) ≤ k ⟺ G

Greedy Algorithm - Observations

Δ(G) := maximum degree in G

Coloring
Greedy Algorithm - Observations

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G) is k-partiteχ(G) ≤ k ⟺ G

Δ(G) := maximum degree in G

Coloring

• For all orders of vertices

• the Greedy Algorithm needs +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

χ(G)

• There exists bipartite Graphs and order of vertices for which

• the Greedy Algorithm needs colors

V = {v1 , . . . , vn}

|V | / 2

Greedy Algorithm - Observations

Coloring

• For the chosen order of vertices s.t.

•

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

k gets increased here

Greedy Algorithm - Observations

Heuristic Meaning

Coloring
Heuristic + Greedy Algorithm

• For the chosen order of vertices s.t.

•

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

• Pick the order of the vertices using the heuristic :

•

• for i = 2 to n do

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

color the first vertex with color 1

min color k s.t. it’s not equal to the color of the neighbors of that are already coloredvi

• Heuristic :

• Vertex with the smallest degree. Delete

• Vertex with the smallest degree in the remaining G. Delete

• Iterate

vn := vn

vn−1 := vn−1

Coloring
Heuristic + Greedy Algorithm - Observations

• If in every subgraph of G , there exists a vertex with degree k

• heuristic provides an order s.t. the Greedy Algorithm needs
k+1 colors

≤

v1, . . . vn

• For trees heuristic+greedy finds a coloring with 2 colors

• For planar graphs heuristic+greedy finds a coloring with 6 colors

• If G is connected and there exists with deg(v) <

heuristic (or bfs/dfs)+ greedy finds a coloring with colors

• If the G is 3-colorable, then one can color it in O(|V| + |E|) time with O() colors

≤

v ∈ G Δ(G)

≤ Δ(G)

|V |

it doesn’t hold only when the
graph is regular: (deg(v) = ∀v ∈ V
Δ(G)

Coloring
Swapping Color Classes Trick

Articulation Points and Bridges
Definition

• The equivalence classes are named as Blocks

Articulation point is the critical
point that holds blocks together. If
a graph has an articulation point, it
serves as the only connection
between two or more blocks.

2 blocks always
intersect at an

articulation point.

Lemma :

Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors

• G can be colored with k colors

Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors

• G can be colored with k colors

Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors

• G can be colored with k colors

?

Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors

• G can be colored with k colors

Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors

• G can be colored with k colors

Coloring

• All Graphs

• can be colored in O(|E|) time with + 1 colorsΔ(G)

Brook’s Theorem

• , , G connected

• can be colored in O(|E|) time with colors

G ≠ Kn G ≠ C2n+1

Δ(G)

Brook’s Theorem

Minitest 2 - rest

A&W

Nil Ozer

Exercise Session 6
Probability I

A&W Overview

Outline

• Minitest 3

• T2 Discussion

• Cycles + TSP Kahoot

• Formelsammlung

• Probability Theory

Minitest 3

• Watch out for the comments !

• Keep up the good work ! 👏👏👏

• Questions, issues … Let me know !

• After the weekend

T2
Feedback + Discussion

Cycles + TSP Kahoot

Let’s take a break

Probability Theory

Formelsammlung

Probability Theory
Importance for CS

• A&W

• NumCS

• WuS

• IML

• InfoSec

• Information Retrieval

• Data Science

• Anything ML related

• Anything AI related

Probability Theory
Importance for CS

LEARN IT ONCE !

Basic Terms of Discrete Probability Space

• Elementary Event (Elementarereignis) : A single outcome of the experiment

• Sample Space (Ergebnismenge) : The set of all possible outcomes

• Elementary Probability (Elementarwahrcheinlichkeit) : Probability of an elementary
event

ωi

Ω Ω = {ω1, ω2, . . . }

Pr[ωi]

Probability Theory

• Event (Ereignis) : A subset of the sample space ()

• Complementary event (Komplementärereignis) : All outcomes not in E

E E ⊆ Ω

E E := Ω \ E

Pr[] Properties

•

•

• Probability of an event E :

0 ≤ Pr[ωi] ≤ 1

∑
ω∈Ω

Pr[ω] = 1

Pr[E] := ∑
ω∈E

Pr[ω]

Probability Theory

Pr[] Properties

•

•

• Probability of an event E :

0 ≤ Pr[ωi] ≤ 1

∑
ω∈Ω

Pr[ω] = 1

Pr[E] := ∑
ω∈E

Pr[ω]

Probability Theory

• For all events

•

•

•

•

A, B, A1, A2, . . .

Pr[∅] = 0 , Pr[Ω] = 1

0 ≤ Pr[A] ≤ 1

Pr[A] = 1 − Pr[A]

A ⊆ B ⟹ Pr[A] ≤ Pr[B]

Examples I

Addition Rule
Probability Theory

Events are
pairwise disjoint

A1, . . . , An Pr [
n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai]

Infinite set of events
 are pairwise

disjoint
A1, A2 . . . Pr [

∞

⋃
i=1

Ai] =
∞

∑
i=1

Pr[Ai]

⟹

⟹

pairwise disjoint : For all pairs with : Ai, Aj i ≠ j Ai ∩ Aj = ∅

Probability Theory

Events are
pairwise disjoint

A1, . . . , An

⟹

Boolean Inequality

Addition Rule Boolean Inequality

For arbitrary events
A1, . . . , An

Pr [
n

⋃
i=1

Ai]
n

∑
i=1

Pr[Ai]≤Pr [
n

⋃
i=1

Ai]
n

∑
i=1

Pr[Ai]=

Inclusion-Exclusion Principle (Siebformel)
Probability Theory

For events A1, . . . , An

Pr [
n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai] − ∑
1≤i1<i2≤n

Pr[Ai1 ∩ Ai2] + ⋯

+(−1)l+1 ∑
1≤i1<⋯<il≤n

Pr[Ai1 ∩ ⋯ ∩ Ail] + ⋯

+(−1)n+1 Pr[A1 ∩ ⋯ ∩ An] .

Inclusion-Exclusion Principle (Siebformel)
Probability Theory Pr [

n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai] − ∑
1≤i1<i2≤n

Pr[Ai1 ∩ Ai2] + ⋯

+(−1)l+1 ∑
1≤i1<⋯<il≤n

Pr[Ai1 ∩ ⋯ ∩ Ail] + ⋯

+(−1)n+1 Pr[A1 ∩ ⋯ ∩ An] .

To find the cardinality of the union of n sets:

1. Include the cardinalities of the sets.

2. Exclude the cardinalities of the pairwise intersections.

3. Include the cardinalities of the triple-wise intersections.

4. Exclude the cardinalities of the quadruple-wise intersections.

5. Include the cardinalities of the quintuple-wise intersections.

6. Continue, until the cardinality of the n-tuple-wise intersection is included
(if n is odd) or excluded (n even).

Inclusion-Exclusion Principle (Siebformel)
Probability Theory Pr [

n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai] − ∑
1≤i1<i2≤n

Pr[Ai1 ∩ Ai2] + ⋯

+(−1)l+1 ∑
1≤i1<⋯<il≤n

Pr[Ai1 ∩ ⋯ ∩ Ail] + ⋯

+(−1)n+1 Pr[A1 ∩ ⋯ ∩ An] .

To find the probability of the union of n sets:

1. Include the probability of the sets.

2. Exclude the probability of the pairwise intersections.

3. Include the probability of the triple-wise intersections.

4. Exclude the probability of the quadruple-wise intersections.

5. Include the probability of the quintuple-wise intersections.

6. Continue, until the probability of the n-tuple-wise intersection is included
(if n is odd) or excluded (n even).

Examples II

Laplace-Space
Probability Theory

• Laplace-Space :

• A finite probability space where all outcomes/elementary events have
the same probability

Ω = {ω1, ω2, . . . , ωn}

Pr[ωi] =
1
n for all i = 1 , . . . , n

Pr[A] =
|A |
|Ω |

Combinatorics
Probability Theory

repetition
allowed

repetition not
allowed

order does not matterorder matters

nk

nk

(n + k − 1
k)

(n
k)

drawing k elements from n options
different ways of

Combinatorics
Probability Theory

Q : Create a 3-digit password using digits 0-9.

Repetition :

Order :

allowed

matters

Formula :

A :

nk

• n = 10

• There are 10 options

• digits 0-9

• k = 3

• We draw 3 elements in order

• password length is 3

103 = 10 ⋅ 10 ⋅ 10 = 1000

Combinatorics
Probability Theory

Q : Choose 3 students to present one after another from a group of 5

Repetition :

Order :

not allowed

matters

Formula :

A :

nk

• n = 5

• There are 5 options

• student group of 5

• k = 3

• We draw 3 elements in order

• 3 students will present

53 = 5 ⋅ 4 ⋅ 3 = 60
nk := n ⋅ (n − 1) ⋅ (n − 2)⋯(n − k + 1)

k Faktoren

Combinatorics
Probability Theory

Q : You have 6 friends. Choose 2 of them to go on a trip.

Repetition :

Order :

not allowed

doesn’t matter

Formula :

A :

(n
k)

• n = 6

• There are 6 options

• you have 6 friends

• k = 2

• We draw 2 elements without order

• 2 friends will come

(6
2) = (6!

2! ⋅ (6 − 2)!) = (6!
2! ⋅ 4!) = 15

(6
2) = (6 ⋅ 5

1 ⋅ 2) = 15

Combinatorics
Probability Theory

Q : Buy 4 scoops of ice cream from 3 flavors (vanilla, chocolate, strawberry)

Repetition :

Order :

allowed

doesn’t matter

Formula :

A :

(n + k − 1
k)

• n = 3

• There are 3 options

• 3 flavors

• k = 4

• We draw 4 elements without order

• 4 scoops of ice cream

(3 + 4 − 1
4) = (6

4) = 15

Do you notice something ?

Combinatorics
Probability Theory

Q : Buy 4 scoops of ice cream from 3 flavors (vanilla, chocolate, strawberry)

Repetition :

Order :

allowed

doesn’t matter

Formula :

A :

(n + k − 1
k)

• n = 3

• There are 3 options

• 3 flavors

• k = 4

• We draw 4 elements without order

• 4 scoops of ice cream

(3 + 4 − 1
4) = (6

4) = 15 = (6
2)

Do you notice something ?

Conditional Probability
Probability Theory

the probability that event A will occur if we
already know that event B has occurred

• conditional probability :

• Let A and B be arbitrary events with . The conditional
probability of given B is

Pr[B] > 0
Pr[A |B] A

Pr[A |B] :=
Pr[A ∩ B]

Pr[B]

Pr[A ∩ B] = Pr[A |B] ⋅ Pr[B]
Pr[A ∩ B] = Pr[B |A] ⋅ Pr[A]

Conditional Probability - Theorems
Probability Theory

Examples III

• Events , and are independent , if A B C

Conditional Independence
Probability Theory

• conditional independence :

• Event and are independent , if A B

Pr[A ∩ B] = Pr[A] + Pr[B]

Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Pr[A ∩ B ∩ C] = Pr[A] ⋅ Pr[B] ⋅ Pr[C]

Pr[A ∩ C] = Pr[A] ⋅ Pr[C]
Pr[B ∩ C] = Pr[B] ⋅ Pr[C]

Minitest 3 - Discussion

A&W

Nil Ozer

Exercise Session 7
Probability II

A&W Overview

Outline
• Coloring Kahoot

• Probability Theory II

• Conditional independence

• Random variables

• Expected value , Variance

• Distributions

Coloring Kahoot

Let’s take a break

Probability Theory

• Events , and are independent , if A B C

Conditional Independence
Probability Theory

• conditional independence :

• Event and are independent , if A B

Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Pr[A ∩ B ∩ C] = Pr[A] ⋅ Pr[B] ⋅ Pr[C]

Pr[A ∩ C] = Pr[A] ⋅ Pr[C]
Pr[B ∩ C] = Pr[B] ⋅ Pr[C]

Conditional Independence - Formelsammlung
Probability Theory

Random Variable
Probability Theory

• random variable X :

• A random variable is a measurable function from a
sample space as a set of possible outcomes to real numbers

X X : Ω → ℝ
Ω

Random process Outcomes Numbers→

X = {1 if heads
0 if tails

Flipping a coin

 Y = Sum of the upward faces
after rolling 8 dices

Rolling 8 dices

https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Outcome_(probability)

Random Variable
Probability Theory

• random variable X :

• A random variable is a measurable function from a
sample space as a set of possible outcomes to real numbers

X X : Ω → ℝ
Ω

Random process Outcomes Numbers→

X = {1 if heads
0 if tails

Flipping a coin

 Y = Sum of the upward faces
after rolling 8 dices

Rolling 8 dices

Pr[X = 1] = Pr[w ∈ Ω |X(w) = 1] Pr[Y ≤ 6] = Pr[w ∈ Ω |X(w) ≤ 6]

https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Outcome_(probability)

Functions
Probability Theory

• probability density function

•

• cumulative distribution function

•

fx(x)

fX : ℝ → [0,1], x ↦ Pr[X = x] (= Pr[X(ω) = x])

Fx(x)

FX : ℝ → [0,1], x ↦ Pr[X ≤ x]

Expected Value
Probability Theory

• expected value

•

•

•

𝔼[X]
𝔼[X] := ∑

x∈Wx

x ⋅ Pr[X = x]

𝔼[X] = ∑
w∈Ω

X(w) ⋅ Pr[w]

𝔼[X] =
∞

∑
i=1

Pr[X ≥ i]

weighted average

Expected Value Properties
Probability Theory • expected value

• 𝔼[X] = ∑
w∈Ω

X(w) ⋅ Pr[w]

weighted average

• linearity:

•

•

•

• monotonicity :

• If then

E[X + Y] = E[X] + E[Y]

E[aX] = aE[x]

E[a1X1 + a2X2 + . . . + anXN + b] = a1E[X1] + . . . + anE[Xn] + b

X ≤ Y E[X] ≤ E[Y]

Variance
Probability Theory

• variance Var[X] measure of how far a set of
numbers is spread out from

their average value/mean
Var[X] := 𝔼[(X − E[x])2] = ∑

x∈WX

(x − E[x])2 ⋅ Pr[X = x]

• standard deviation σ

σ := Var[X]

Var[X] = 𝔼[X2] − 𝔼[X]2

Var[a ⋅ X + b] = a2 ⋅ Var[X]

Formelsammlung
Probability Theory

Probability Theory
Distributions

Indicator Variable
Probability Theory

• indicator variable :

• For an event

•

IA

A ⊆ Ω

p = Pr[A] = E[IA]

IA(ω) := {1, ω ∈ A
0, ω ∉ A

fIA
(x) =

p, x = 1,
1 − p, x = 0,
0, otherwise

Bernoulli Distribution
Probability Theory

X ∼ Bernoulli(p)

fX(x) =
p, x = 1,
1 − p, x = 0,
0, otherwise

E[X] = p Var[X] = p (1 − p)

yes-no question

Example to remember :

Coin toss

X = indicator for head

Binomial Distribution
Probability Theory

X ∼ Bin(n, p)

fX(x) = (n
x) px(1 − p)n−x, x ∈ {0,1,…, n}

0, otherwise

E[X] = np Var[X] = np (1 − p)

sucesses in a sequence
of n yes-no questions

Example to remember :

Coin toss 10 times

X = #heads

✅
✅✅✅

Poisson-Distribution
Probability Theory

X ∼ Po(λ)

fX(i) = {
e−λλi

i! , für i ∈ ℕ0

0, otherwise

E[X] = λ Var[X] = λ

 converges to Bin(n, λ/n) Po(λ)

for n → ∞

Geometric Distribution
Probability Theory

X ∼ Geo(p)

fX(i) = {p(1 − p)i−1, für i ∈ ℕ,
0, otherwise

#yes-no questions
needed to get one yes

Example to remember :
Coin toss until a head comes

X = #tosses

✅

❌
❌
❌
❌

FX(n) = 1 − (1 − p)n

E[X] = 1/p Var[X] =
1 − p

p2

Geometric Distribution
Probability Theory

X ∼ Geo(p)

fX(i) = {p(1 − p)i−1, für i ∈ ℕ,
0, otherwise

E[X] = 1/p Var[X] =
1 − p

p2

✅

❌
❌
❌
❌

Robin has no brain

Memorylessness

Pr[X ≥ s + t ∣ X > s] = Pr[X ≥ t]
Pr[X = s + t ∣ X > s] = Pr[X = t]FX(n) = 1 − (1 − p)n

Negative Binomial Distribution
Probability Theory

X ∼ NegativeBinomial(n)

fX(k) = (k − 1
n − 1)(1 − p)k−npn, for k = 1,2,…

0, otherwise

#yes-no questions
needed to get n yesses

Example to remember :
Coin toss until n-th head comes

X = #tosses

✅

❌
❌
❌

E[X] = n/p

✅

Coupon Collector
Probability Theory

Xi ∼ Geo (n − (i − 1)
n)

collect all coupons and
win

Example to remember :

n different coupons , we’re
getting one in each turn

X = #turns until we get all n
coupons𝔼[X] =

n

∑
i=1

𝔼[Xi] =
n

∑
i=1

n
n − i + 1

= n ⋅
n

∑
i=1

1
i

= n ⋅ Hn,

 #turns in phase i Xi :=

phase i := turns while we have i-1 different coupons

X =
n

∑
i=1

Xi

E[Xi] = 1/p

Hn = ln n + 𝒪(1)

Formelsammlung
Probability Theory

Examples

A&W

Nil Ozer

Exercise Session 8
Probability III

A&W Overview

Outline
• Minitest 4

• Probability Theory III

• independence of random variables

• wald’s identity

• inequalities

• A Game of Skill - Probability CodeExpert

Minitest 4

Probability Theory

Independence of random variables
Probability Theory

• independent (random variables)

• are independent if for all the events

 are independent.

X1 , . . . , Xn x1 ∈ XX1
, , , xn ∈ WXn

X1 = x1, X2 = x2 , . . . , Xn = xn

Pr[X1 = x1, …, Xn = xn]

=fX1,…,Xn(x1,x2,…,xn)

= Pr[X1 = x1]

=fX1
(x1)

⋯Pr[Xn = xn]

=fXn(xn)

Independence of random variables
Probability Theory

• are independent random variables, arbitrary :

•

X1 , . . . , Xn S1 , . . . , Sn ⊆ ℝ

Pr[X1 ∈ S1, …, Xn ∈ Sn] = Pr[X1 ∈ S1]⋯ Pr[Xn ∈ Sn] .

• are independent random variables , are real-valued

functions (for) :

• are independent random variables

X1 , . . . , Xn f1 , . . . , fn
fi : ℝ → ℝ i = 1 , . . . , n

f1(X1), …, fn(Xn)

Independence of random variables
Probability Theory

• and are two independent random variables, X Y Z := X + Y

Poisson(λ1) + Poisson(λ2) = Poisson(λ1 + λ2)

fZ(z) = ∑
x∈WX

fX(x) ⋅ fY(z − x) .

Bin(n, p) + Bin(m, p) = Bin(n + m, p)

Wald’s Identity
Probability Theory

• and are two independent random variables, N X WN ⊆ ℕ

Z :=
N

∑
i=1

Xi

𝔼[Z] = 𝔼[N] ⋅ 𝔼[X]

where are independent copies of X1 , X2 . . . X

Example

Inequalities
Probability Theory

get used to using it !

Let’s take a break

A Game of Skill
CodeExpert

Questions

Nil Ozer

Feedbacks , Recommendations

A&W

Nil Ozer

Exercise Session 10
Randomized Algorithms II

A&W Overview

Last Weeks …
• 08.05 : Randomized Algorithms II

• 15.05 : Flow

• 22.05 online : Minimum Cut , Convex Hull I (shortly remaining primality tests)

• 27.05/28.05 extra session : Convex Hull II , Smallest Enclosing Cycle

• 29.05 last session : Exam Prep Session + Pizza and Drinks

Outline

• Randomized Algorithms II

• Randomized Algorithms I recap

• Primality Tests

• Colorful Paths

Randomized Algorithms
Recap

Classic vs. Randomized
Randomized Algorithms

Input Algorithm Output

RNG R

random bits, random numbers

classic randomized

• is correct and definite
for all

A(I)
I

I A A(I)
Input Algorithm Output

I A A(I, R)

• The runtime is O(f(n)) for all
with n

I
| I | =

• is correct with
… for all

A(I, R)
PrR[A(I, R) is correct] ≥ I

• The runtime is O(f(n)) and/or

Runtime O(f(n))] … for all with nPrR[≤ ≥ I | I | =

 can’t be reproduced

A(I, R)

Las-Vegas vs. Monte-Carlo
Randomized Algorithms

Las-Vegas Monte-Carlo

• can output true answer
• cannot output false answer
• can run forever/ can output no

answer (???)

• can output true answer
• can output false answer
• always outputs an answer

Problem Description
Target-Shooting

given :

to find :

finite sets and with S U S ⊆ U

 ≈
|S |
|U |

We can generate elements in
uniformly distributed

u U

 is very large. We cannot
afford to iterate through
U

U

 IS : U → {0,1}
 IS(u) = 1 ⟺ u ∈ S

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

1
10

⋅
10

∑
i=1

IS(ui) =
3
10

|S |
|U |

≈
20
64

= 0.3125

Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick from randomly, uniformly and independentlyu1, . . . , uN U

2 : Return
1
N

⋅
N

∑
i=1

IS(ui)

Problem Description
Finding Duplicates

given :

to find :

A dataset , is a sequence of elementsD = (s1, s2, . . . , sn) n

find all duplicates in D with is a duplicate in if (i, j) 1 ≤ i < j ≤ n D
si = sj

Problem Description
Finding Duplicates

given :

to find :

A dataset , is a sequence of elementsD = (s1, s2, . . . , sn) n

find all duplicates in D with is a duplicate in if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in are very large.

Storing and comparing is
expensive

D

Hashfunction h :

h : U → [m]

h is efficiently computable
h behaves like a random variable

[m] = {1,2,...,m}

∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =
1
m

(independent for different u)

Problem Description
Finding Duplicates

given :

to find :

A dataset , is a sequence of elementsD = (s1, s2, . . . , sn) n

find all duplicates in D with is a duplicate in if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in are very large.

Storing and comparing is
expensive

D

Hashfunction h :
h : U → [m] [m] = {1,2,...,m} ∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =

1
m

Each is uniformly randomly distributed in BUTh(si) [m]

si = sj ⟹ h(si) = h(sj)

Our is much smaller than (compression)m |U |

Algorithm
Finding Duplicates

hashing:

sorting:
duplicates:

Challenge : Collisions
Finding Duplicates

hashing:

sorting:
duplicates:

collision : h(B) = h(Z)

Challenge : Collisions
Finding Duplicates

Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)

Challenge : Collisions
Finding Duplicates
Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] = ∑
1≤i<j≤n

𝔼[Ki,j] ≤ (n
2) ⋅

1
m

Challenge : Collisions
Finding Duplicates
Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2

Runtime
Finding Duplicates
Collision :

The new, undesired duplicates in the hashmap

the pairs with and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2

Runtime :
• n hash computations
• sorting in O(n log n)

• duplicate check comparisons (|Dupl(D)|+#Kollisionen) O(n)≈

O(n log n)

indices

+ O(n log m)

hash values

m=n2
= O(n log n)

additional memory

Overall : O(n log n)

Randomized Algorithms
Primality Tests

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime ? ?n

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

π(11) =

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

π(11) = 5

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x) π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

Naive Algorithm
Primality Test

1) For all test if divides a ≤ n a n

Easy randomized test
Primality Test

1) Choose uniformly at randoma ∈ {1,2, . . . , n}
2) if divides then return ‘not prime’

3) else return ‘prime’

a n

DiskMat 🤢
Refresher

gcd : greatest common divisor

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1]

 : the multiplicative group modulo n ℤ*n
ℤ*n = {a ∈ {1,2,…, n − 1} ∣ gcd(a, n) = 1}

Euclidean Primality Test
Primality Test

1) Choose uniformly at randoma ∈ {1,2, . . . , n}
2) if then return ‘not prime’

3) else return ‘prime’

gcd(a, n) > 1

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1] gcd := greatest common divisor

can be calculated in O((log nm)3)

• if n is a prime : always correct

{a ∈ [1,n − 1] : gcd(a, n) = 1}
n − 1

=
|ℤ*n |
n − 1

• if n is not a prime : it might return a wrong answer with the probability

Let’s take a break

Randomized Algorithms
Colorful Paths

Mathematical Tools and Notations
Helper

 [n] := {1,2 , . . . , n}

 the set of sequences over of length [n]k := [n] k | [n]k | = nk

 the set of -element subsets of ([n]
k) := k [n] ([n]

k) = (n
k) .

The nodes on a path of length can be colored using in exactly waysk k − 1 [k] kk

 of these colorings use each color exactly once k!

Mathematical Tools and Notations
Helper

Handshaking lemma : For all graphs , it holds that ∑
v∈V

deg(v) = 2 |E | .

If you repeat an experiment with success probability until success, then the

expected number of trials is ()

p
1
p

Geo(p)

Mathematical Tools and Notations
Helper

For , it holds that c, n ∈ ℝ+ clog n = nlog c

 and is always polynomial in 2log n = nlog 2 = n 2𝒪(log n) = n𝒪(1) n

For , it holds that n ∈ ℕ0

n

∑
i=0

(n
i) = 2n

For , it holds that n ∈ ℕ0
n!
nn

≥ e−n (power series expansion of the exponential function)

(binomial theorem)

Problem Description
Long-Path

given :

to find :

A graph and a number G B ∈ ℕ0

is there a path of length in B G

Problem Description

given :

to find :

A graph and a number G B ∈ ℕ0

is there a path of length in B G

NP-Complete

Detour !

Long-Path

Problem Description

given :

to find :

A graph G = (V, E)

Does there exist a colorful path of length in a randomly colored
graph ?

k − 1

Colorful Paths

A coloring of its vertices with colors k γ : V → [k]

colorful :

A path is colorful if all of the vertices in the path have a different color

Problem Description

given :

to find :

A graph G = (V, E)

Does there exist a colorful path of length in a randomly colored
graph ?

k − 1

Colorful Paths

A coloring of its vertices with colors k γ : V → [k]

A path is colorful if all of the vertices in the path have a different color

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

∃ colorful path of length k − 1 ⟺ ⋃
v∈V

Pk−1(v) ≠ ∅

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}
color sets S s.t |S| = i+1 and there is a

colorful path of length i ending at v only
using the colors in S

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) =
color sets S s.t |S| = i+1 and there is a

colorful path of length i ending at v only
using the colors in S

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}
color sets S s.t |S| = i+1 and there is a

colorful path of length i ending at v only
using the colors in S

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}
color sets S s.t |S| = i+1 and there is a

colorful path of length i ending at v only
using the colors in S

• P1(v) =

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)} ∣ x ∈ N(v) und γ(x) ≠ γ(v)}

color sets S s.t |S| = i+1 and there is a
colorful path of length i ending at v only

using the colors in S

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)} ∣ x ∈ N(v) und γ(x) ≠ γ(v)}

color sets S s.t |S| = i+1 and there is a
colorful path of length i ending at v only

using the colors in S

• Pi(v) =

Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)} ∣ x ∈ N(v) und γ(x) ≠ γ(v)}

color sets S s.t |S| = i+1 and there is a
colorful path of length i ending at v only

using the colors in S

•
 Pi(v) = ⋃

x∈N(v)
{R ∪ {γ(v)} ∣ R ∈ Pi−1(x) und γ(v) ∉ R}

Algorithm
Colorful Paths

Algorithm
Colorful Paths

1

2

3

4

5

6

7P0

P0 (1)

P0 (2)

P0 (3)

P0 (4)

P0 (5)

P0 (6)

P0 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P0

P0 (1) {{1}}

P0 (2) {{1}}

P0 (3) {{1}}

P0 (4) {{2}}

P0 (5) {{3}

P0 (6) {{3}}

P0 (7) {{4}}

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1)

P1 (2)

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2)

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2)

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6) ∅
P1 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6) ∅
P1 (7) {{3 , 4}}}

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1)

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1)

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5) {{1 , 2 , 3}}

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5) {{1 , 2 , 3}}

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5) {{1 , 2 , 3}}

P2 (6) ∅
P2 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5) {{1 , 2 , 3}}

P2 (6) ∅
P2 (7) {{2 , 3 , 4}}

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7P3

P3 (1)

P3 (2)

P3 (3)

P3 (4)

P3 (5)

P3 (6)

P3 (7)

γ 1 , 2 , 3 , 4

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1)

P3 (2)

P3 (3)

P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2)

P3 (3)

P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2)

P3 (3)

P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3)

P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3)

P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4)

P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5)

P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6)

P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6) ∅
P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6) ∅
P3 (7)

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6) ∅
P3 (7) {{1 , 2 , 3 , 4}} returns true !

Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6) ∅
P3 (7) {{1 , 2 , 3 , 4}} returns true !

Algorithm + Probability
Colorful Paths

Satz 3.2

Satz 3.3

Mathematical Tools and Notations
Helper

 [n] := {1,2 , . . . , n}

 the set of sequences over of length [n]k := [n] k | [n]k | = nk

 the set of -element subsets of ([n]
k) := k [n] ([n]

k) = (n
k) .

The nodes on a path of length can be colored using in exactly waysk k − 1 [k] kk

 of these colorings use each color exactly once k!

Mathematical Tools and Notations
Helper

Handshaking lemma : For all graphs , it holds that ∑
v∈V

deg(v) = 2 |E | .

If you repeat an experiment with success probability until success, then the

expected number of trials is ()

p
1
p

Geo(p)

Mathematical Tools and Notations
Helper

For , it holds that c, n ∈ ℝ+ clog n = nlog c

 and is always polynomial in 2log n = nlog 2 = n 2𝒪(log n) = n𝒪(1) n

For , it holds that n ∈ ℕ0

n

∑
i=0

(n
i) = 2n

For , it holds that n ∈ ℕ0
n!
nn

≥ e−n (power series expansion of the exponential function)

(binomial theorem)

A&W

Nil Ozer

Exercise Session 11
Flow

A&W Overview

Last Weeks …
• 08.05 : Randomized Algorithms II

• 15.05 : Flow

• 22.05 online : Minimum Cut , Convex Hull I (shortly remaining primality tests)

• 28.05 extra session : Convex Hull II , Smallest Enclosing Cycle

• 30.05 last extra session : Exam Prep Session + Pizza and Drinks

Outline

• Minitest 5

• Flow

Minitest 5

Flow

Definitions
Flow

• Network :

•

• is a directed graph (without loops)

• is the source

• is the sink

• is the capacity function

N

N = (V, A , c , s , t)

(V, A)

s ∈ V

t ∈ V ∖ s

c : A → ℝ+
0

ts

Definitions
Flow

• Network :

•

• is a directed graph (without loops)

• is the source

• is the sink

• is the capacity function

N

N = (V, A , c , s , t)

(V, A)

s ∈ V

t ∈ V ∖ s

c : A → ℝ+
0

s b

a

c

t

5

1 7

2 2

16
6

Definitions
Flow

• Flow in : f N f : A → ℝ

∑
u∈V:(u,v)∈A

f(u, v) = ∑
u∈V:(v,u)∈A

f(v, u) for all v ∈ V∖{s, t}

val(f) := netoutflow(s) := ∑
u∈V:(s,u)∈A

f(s, u) − ∑
u∈V:(u,s)∈A

f(u, s)

0 ≤ f(e) ≤ c(e) for all e ∈ ACapacity constraint :

Flow conservation :

The value of a flow :

val(f) = netinflow(t) := ∑
u∈V:(u,t)∈A

f(u, t) − ∑
u∈V:(t,u)∈A

f(t, u)
what flows out of the

source, must flow into the
sink

Definitions
Flow

• Flow in : f N f : A → ℝ

∑
u∈V:(u,v)∈A

f(u, v) = ∑
u∈V:(v,u)∈A

f(v, u) for all v ∈ V∖{s, t}

val(f) := netoutflow(s) := ∑
u∈V:(s,u)∈A

f(s, u) − ∑
u∈V:(u,s)∈A

f(u, s)

0 ≤ f(e) ≤ c(e) for all e ∈ ACapacity constraint :

Flow conservation :

The value of a flow :

val(f) = netinflow(t) := ∑
u∈V:(u,t)∈A

f(u, t) − ∑
u∈V:(t,u)∈A

f(t, u)
what flows out of the

source, must flow into the
sink

Definitions
Flow

Is this a correct flow function ?

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

6

1 7

2 1

15
6

Definitions
Flow

Is this a correct flow function ?

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

6

1 7

2 1

15
6

No !

Harms the capacity
constraint

0 ≤ f(e) ≤ c(e) for all e ∈ A

Definitions
Flow

Is this a correct flow function ?

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 2

15
6

Definitions
Flow

Is this a correct flow function ?

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 2

15
6

No !

Harms the flow
conservation

∑
u∈V:(u,v)∈A

f(u, v) = ∑
u∈V:(v,u)∈A

f(v, u) for all v ∈ V∖{s, t}

the total inflow equals
total outflow

Definitions
Flow

Is this a correct flow function ?

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 1

15
6

Definitions
Flow

Is this a correct flow function ?

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 1

15
6

Yes !

What is ? val(f)
3 + 5 - 1 = 7

what flows out of the
source, must flow into the

sink

7 + 1 - 1 = 7

• s-t-cut for a network (S, T) (V, A, c, s, t)

• capacity of an s-t-cut (S, T)

Definitions
Flow

• is a partition of V

• with and (S, T) s ∈ S t ∈ T

cap(S, T) := ∑
(u,w)∈(S×T)∩A

c(u, w)

Partition (S, T) : S ∪ T = V und S ∩ T = ∅

• capacity of an s-t-cut (S, T)

Definitions
Flow

cap(S, T) := ∑
(u,w)∈(S×T)∩A

c(u, w)

tss b

a

c

t

5

1 7

2 2

16
6

cap(S, T) = ?

• capacity of an s-t-cut (S, T)

Definitions
Flow

cap(S, T) := ∑
(u,w)∈(S×T)∩A

c(u, w)

tss b

a

c

t

5

1 7

2 2

16
6

cap(S, T) = 6 + 2 + 2 = 10

• Let be a flow and an s-t-cut in a network : f (S, T) (V, A, c, s, t)

Lemmas
Flow

val(f) ≤ cap(S, T)
A flow can never exceed the capacity of an s-t-cut

If we can find an s-t-cut s.t.
then is a maximum flow.

val(f) = cap(S, T)
f

• Maxflow-Mincut Theorem :

Every network satisfies

max
f

val(f) = min
(S,T) s-t-cut

cap(S, T)

Problem Description

given :

to find :

A network N = (V, A, c, s, t)

A flow of maximum value

Flow

Local changes to the flow that preserve flow conservation
Flow

When increasing : watch out for the capacity

When decreasing : watch out for the previous flow
the total inflow equals

total outflowundirected augmenting path :

Local changes to the flow that preserve flow conservation
Flow

10

6

4

6

6

0

6

0

Local changes to the flow that preserve flow conservation
Flow

 c

f

c − f

f

Residual Network
Flow

• Residual Network :

• Let be a network , flow for

•

• , : put in , -

• , 0 : put in ,

Nf

N = (V, A , c , s , t) f N

Nf = (V, Af , rf , s , t)

e ∈ A f(e) < c(e) e Af rf(e) := c(e) f(e)

e ∈ A f(e) > eopp Af rf(eopp) := f(e)

 “residual capacity”rf

Residual Network examples
Flow

in Network in Residual Network

10

6

4

6

Residual Network examples
Flow

in Network in Residual Network

10

10

10

Residual Network examples
Flow

in Network in Residual Network

10

0

10

• Let be a flow and an s-t-cut in a network : f (S, T) (V, A, c, s, t)

Remember
Flow

val(f) ≤ cap(S, T)
A flow can never exceed the capacity of an s-t-cut

If we can find an s-t-cut s.t.
then is a maximum flow.

val(f) = cap(S, T)
f

• Maxflow-Mincut Theorem :

Every network satisfies

max
f

val(f) = min
(S,T) s-t-cut

cap(S, T)

Theorem
Flow

Let N be a network without reverse edges

A flow is a maximum flow f

There exists no directed s-t-path in the residual network Nf

⟺

Ford-Fulkerson Algorithm
Flow

1 :

2 : while s-t-path in do

3 : Augment the flow along

4 : return

f ← 0

∃ P Nf

P

f

Augmenting along : P
Take a look at all the residual capacities on this path

Take the minimum rf,min

Increase the flow on this path with the minimum rf,min

No termination guarantees in ℝ
There exists an integer maximum flow and
it can be computed in O(mnU)
U is the maximum capacity

integer capacities , no reverse edges :

https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/

Ford-Fulkerson Algorithm
Flow

https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/

1) Start with initial flow as 0

2) While there exists an augmenting path from the source to the sink:

Find an augmenting path using any path-finding algorithm, such as
breadth-first search or depth-first search.

Determine the amount of flow that can be sent along the augmenting
path, which is the minimum residual capacity along the edges of the
path.

Increase the flow along the augmenting path by the determined
amount.

3) Return the maximum flow.

Let’s take a break

Example question
Flow

Applications
Flow

Maximum Bipartite Matching Problem

given :

to find :

A bipartite graph G (unweighted, undirected)

Find a cardinality-maximum Matching

Matching
Recap

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

Matching

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

✅
1 = {{a,c} , {e,f}}M

Recap

Matching

no two edges share common vertices

a b

c d e

f

• Matching :

• A subset of edges in a Graph is called a Matching,
if no vertex in the graph is incident to more than one edge from

M ⊆ E G = (V, E)
M

Is this a matching ?

❌

Recap

Matching

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′

M ⊆ M′ |M′ | > |M |

“no edge can be added to this matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”

Recap

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′ |M′ | > |M |

Matching

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ?

✅ ✅

“no edge can be added to this matching”

“one can’t find a bigger matching”

Recap

Matching

• inclusion-maximal :

• A matching is inclusion-maximal , if there is no other matching
s.t. (strict inclusion) and

M ⊆ E M′

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ?

✅ ❌

“no edge can be added to this matching”

• (cardinality-) maximum :

• A matching is (cardinality-) maximum , if there is no other
matching s.t.

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”

Recap

Applications
Flow

Maximum Bipartite Matching Problem

Graph to Newtork : Build a Network NG

G = (U ⊎ W, E)

bipartite G

↦ NG = U ⊎ W ⊎ {s, t}

Vertex Set

, A, c, s, t

Network
add and , additional vertices s.t. s t s ≠ t

c ≡ 1

A = ({s} × U) ∪ {(u, w) ∈ U × W ∣ {u, w} ∈ E} ∪ (W × {t})

Applications
Flow

Maximum Bipartite Matching Problem

given :

to find :

A bipartite graph (unweighted, undirected)G = (U ∪ W, E)
Find a cardinality-maximum Matching

Algorithm :

Build a Network NG
G = (U ⊎ W, E)

bipartite G

↦ NG = U ⊎ W ⊎ {s, t}

Vertex Set

, A, c, s, t

Networkadd and , additional vertices s.t. s t s ≠ t

c ≡ 1A = ({s} × U) ∪ {(u, w) ∈ U × W ∣ {u, w} ∈ E} ∪ (W × {t})

max
M Matching in G

|M | = max
f Flow in NG

val(f)

Applications
Flow

Edge-disjoint paths problem

given :

to find :

A graph G with two vertices s.t. u, v u ≠ v .

Maximum number of edge-disjoint paths u − v

Applications
Flow

Edge-disjoint paths problem

G = (V, E), u, v ∈ V

Graph with 2 vertices

⇒ N*G = (V, A, c, u, v)

Network

A := {(x, y), (y, x) ∣ {x, y} ∈ E}

c ≡ 1

Graph to Newtork :

Applications
Flow

Edge-disjoint paths problem

G = (V, E), u, v ∈ V

Graph with 2 vertices

⇒ N*G = (V, A, c, u, v)

Network

A := {(x, y), (y, x) ∣ {x, y} ∈ E}

c ≡ 1

Graph to Newtork :

Applications
Flow

Edge-disjoint paths problem

given :

to find :

A graph G with two vertices s.t. u, v u ≠ v .

Maximum number of edge-disjoint paths u − v

Algorithm :

Build a Network NG
G = (V, E), u, v ∈ V

Graph with 2 vertices

⇒ N*G = (V, A, c, u, v)

Network

A := {(x, y), (y, x) ∣ {x, y} ∈ E} c ≡ 1
 # edge disjoint u-v paths = max

f Flow in NG

val(f)

Applications
Flow

Edge-disjoint paths problem

Applications
Flow

Image Segmentation

given :

to find :

An image modeled as a graph G = (P, E)

seperate foreground from background

color information χ : P → colors

color information χ : P → colors

per-pixel estimates α : P → ℝ+
0 β : P → ℝ+

0 γ : E → ℝ+
0

 is bigger more likely foregroundαp ⟹
 is bigger more likely backgroundβp ⟹
 is bigger more likely belong to the same regionγe ⟹

Applications
Flow

Image Segmentation

color information χ : P → colors

per-pixel estimates

q(A, B) := ∑
p∈A

αp + ∑
p∈B

βp − ∑
e ∈ E,

|e ∩ A | = 1

γe

α : P → ℝ+
0 β : P → ℝ+

0 γ : E → ℝ+
0

 is bigger more likely foregroundαp ⟹
 is bigger more likely backgroundβp ⟹
 is bigger more likely belong to the same regionγe ⟹

Quality function :

q′ (A, B) := ∑
p∈A

βp + ∑
p∈B

αp + ∑
e ∈ E

|e ∩ A | = 1

γe

maximize

minimize

Applications
Flow

Build a Network NG

NG := (P ∪ {s, t}, ⃗E , c, s, t)
add and , additional vertices s.t. s t s ≠ t

Image Segmentation

 has a directed edge to each pixel with capacity s p ∈ P αp

each pixel has a directed edge to with capacity p ∈ P t βp

for each edge there are two directed edges and
 with capactiy

e = {p, p′ } ∈ E (p, p′)
(p′ , p) γe

max
M Matching in G

|M | = max
f Flow in NG

val(f)

Applications
Flow

Image Segmentation

max
M Matching in G

|M | = max
f Flow in NG

val(f)

Applications
Flow

Image Segmentation

given :

to find :

An image modeled as a graph G = (P, E)

seperate foreground from background

color information
χ : P → colors

q′ (A, B) = max
f Flow in NG

val(f)

Algorithm :

A&W

Nil Ozer

Exercise Session 12
Minimum Cut, Smallest Enclosing Cycle

A&W Overview

Last Weeks …
• 08.05 : Randomized Algorithms II

• 15.05 : Flow

• 23.05 online : Minimum Cut , Smallest Enclosing Circle

• 28.05 extra session : Exam Prep Session + Pizza and Drinks

• 30.05 last extra session : Convex Hull (shortly remaining primality tests)

Outline

• Minimum Cut

• Smallest Enclosing Circle

Minimum Cut

Definitions
Min-Cut

• Multigraph :

• undirected, unweighted, without self-loops

• possibly with multiple edges between the same pair of nodes

Definitions
Min-Cut

• Multigraph :

• undirected, unweighted, without self-loops

• possibly with multiple edges between the same pair of nodes

• Edge Cut :

• A set of edges s.t. is a disconnected graph.

C

C G′ = (V, E∖C)

Definitions
Min-Cut

• Multigraph :

• undirected, unweighted, without self-loops

• possibly with multiple edges between the same pair of nodes

• Edge Cut :

• A set of edges s.t. is a disconnected graph.

• :

• the cardinality of the smallest possible edge cut in graph G.

C

C G′ = (V, E∖C)

μ(G)

μ(G) := min
C ⊆ E,

(V, E∖C) disconnected

|C |

Problem Description

given :

to find :

A multigraph G

μ(G)

Min-Cut

Problem Description

given :

to find :

A multigraph G

μ(G)

Min-Cut

Examples :

First Known Solution
Min-Cut minimum s-t cut in O(mn logn)

• Fix a source node

• Then consider , for each compute the minimum s-t cut

• The global min-cut is the smallest of these s-t cuts

s

t ∈ V∖{s} t

total runtime : O((n-1)mn logn) = O(n4 logn)

Edge Contraction of e
Min-Cut

e = {u, v} ∈ E

e

u v G

Edge Contraction of e
Min-Cut

e = {u, v} ∈ E

e

u v G

{w, w′ } ↦ {w, w′ }, {w, u} ↦ {w, xu,v}, {w, v} ↦ {w, xu,v}
For : w, w′ ∈ V(G)∖{u, v}

Edge Contraction of e
Min-Cut

e = {u, v} ∈ E
xu,v / G e

{w, w′ } ↦ {w, w′ }, {w, u} ↦ {w, xu,v}, {w, v} ↦ {w, xu,v}
For : w, w′ ∈ V(G)∖{u, v}

Lemma
Min-Cut

Let be a multigraph, G = (V, E) e ∈ E

μ(G∖e) ≥ μ(G)

If has a minimum cut s.t. G C e ∉ C

μ(G∖e) = μ(G)

The minimum cut value can never decrease when contracting an edgeμ
 stays unchanged if there exists a minimum cut that doesn’t contain the

edge being contracted
μ

Find whose
contraction preserves

e
μ

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′

Runtime : O(n2)

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′

Cut(G)
Min-Cut

1 :

2 : while do

3 : uniformly random edge in

4 :

5 : return size of the unique cut in

G′ ← G

|V(G′) | > 2

e ← G′

G′ ← G′ ∖e

G′ 5 !

Cut(G)
Min-Cut

Pr[μ(G) = μ(G/e)] ≥ 1 −
2
n

For an edge e :

For all G with , : |V | = n n ≥ 3

̂p(G) := Probability that Cut(G) returns the value μ(G)

̂p(n) := inf
G = (V, E),

|V | = n

̂p(G) ̂p(n) ≥ (1 −
2
n) ⋅ ̂p(n − 1) ̂p(n) ≥

2
n(n − 1)

=
1

(n
2)

Cut(G)
Min-Cut

We repeat the algorithm Cut(G) times for some and return the smallest

value obtained.

λ (n
2) λ > 0

Runtime : O() λn4

Success
Probability :

The smallest encountered value equals with probability at
least

μ(G)
1 − e−λ

 , runtime is O() with failure probability λ := lnn n4logn ≤ 1/n
we already had a deterministic solution with this runtime !

Cut(G) + Strategy Switch in the Critical Region
Min-Cut Idea : Last steps are critical

Stop contracting when there are t vertices remaining

switch to a randomized O() algorithm with success probability t4 ≥ 1 − e−1

Runtime :

Success Probability :

O(λ(
n4

t2
+ n2t2)

t= n
= O(λn3)

≥ 1 − e−1

Bootstrapping : We can use the same method to improve further. In
“Limit” we have a O(polylog()) algorithm. n2 n

Let’s take a break

Smallest Enclosing Circle

Problem Description

given :

to find :

A finite set of points P ⊆ ℝ2

The circle with the smallest radius that encloses all points in P

Smallest Enclosing Circle

C encloses P :

 the closed disk bounded by C C′ :=

C encloses P if P ⊆ C′

Lemmas
Smallest Enclosing Circle

For every finite set of points there exists a unique smallest
enclosing cycle

P ⊆ ℝ2

C(P)

For every finite set of points with there exists a subset
 with s.t.

P ⊆ ℝ2 |P | ≥ 3
Q ⊆ P |Q | = 3 C(Q) = C(P)

 acts as a certificate for Q C(P)

Easy Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

1 :

2 : repeat

3 : randomly and uniformly choose a subset with

4 : compute

5 : if then return

6 : else double all points in that lie outside of

7 : forever

P′ ← P

Q ⊆ P′ |Q | = 11

C(Q)

P ⊆ C′ (Q) C(Q)

P′ C(Q)

Runtime : O(n log n)

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Algorithm
Smallest Enclosing Circle

Sampling Lemma
Smallest Enclosing Circle

Let , and be a multiset with r, N ∈ ℕ r ≤ N P′ ⊆ ℝ2 |P′ | = N

For chosen uniformly at random from , the folowing holds : R (P′

r)

𝔼 P′ ∖C′ (R)

Points in P′ outside C(R)

≤ 3 ⋅
N − r
r + 1

≤ 3 ⋅
N

r + 1

Minitest 5 solutions

A&W

Nil Ozer

Exercise Session 13
Convex Hull , Primality Test II

A&W Overview

Last Weeks …
• 08.05 : Randomized Algorithms II

• 15.05 : Flow

• 23.05 online : Minimum Cut , Smallest Enclosing Circle

• 28.05 extra session : Exam Prep Session + Pizza and Drinks

• 30.05 last extra session : Convex Hull (shortly remaining primality tests)

Outline

• Convex Hull

• Primality Tests II

Convex Hull

Definitions
Convex Hull

• line segment :

for ,

v0v1

v0, v1 ∈ ℝd v0v1 := {(1 − λ)v0 + λv1 ∣ λ ∈ ℝ, 0 ≤ λ ≤ 1}

Definitions
Convex Hull

• line segment :

for ,

• convex :

 A set is called convex if

v0v1

v0, v1 ∈ ℝd v0v1 := {(1 − λ)v0 + λv1 ∣ λ ∈ ℝ, 0 ≤ λ ≤ 1}

C ⊆ ℝd ∀v0, v1 ∈ C : v0v1 ⊆ C

Definitions
Convex Hull

• line segment :

for ,

• convex :

 A set is called convex if

• convex hull :

The convex hull of a set is the intersection of all convex sets
that contain S.

v0v1

v0, v1 ∈ ℝd v0v1 := {(1 − λ)v0 + λv1 ∣ λ ∈ ℝ, 0 ≤ λ ≤ 1}

C ⊆ ℝd ∀v0, v1 ∈ C : v0v1 ⊆ C

conv(S)

S ⊆ ℝd

conv(S) := ⋂
S ⊆ C ⊆ ℝd

C konvex

C

Problem Description

given :

to find :

A finite set of points P ⊆ ℝ2

The convex hull of P

Convex Hull

• Points are in general position !

• No three points lie on the
same line

• No two points share the same
x-coordinate

Convex Hull

• Output: We want to determine the vertices of the convex polygon. So, we want to
determine a sequence that defines the vertices in a
counterclockwise order.

(q0, q1, …, qh−1), h ≤ n,

Problem Description

Convex Hull

• A pair qr∈P, with q≠r, is called a boundary edge of , if all points in lie to

the left of the line segment .

P P∖{q, r}
qr

Boundary Edge

Idea :

 is the
sequence of vertices of the

polygon enclosing conv(P) in
a counterclockwise order

(q0, q1, …, qh−1)

⇔ All pairs (qi-1 ,qi) are boundary
edges of P

Jarvis Wrap
Algorithm

Point in P with smallest x-coordinate

For sure a vertex of
the convex hull

Find the next vertex that
builds the boundary edge

(qh ,qh+1)

Consider the
current vertex

Jarvis Wrap
Algorithm

Choose arbitrarily

is to the right of

Jarvis Wrap
Runtime

Choose arbitrarily

is to the right of

O (nh)

h is the #vertices of the convex hull

Jarvis Wrap
Illustration

point with smallest x
coordinate

Jarvis Wrap
Illustration

point with smallest x
coordinate

q0

Jarvis Wrap
Illustration

next

q0

Jarvis Wrap
Illustration

next

it’s on the right of next

q0

Jarvis Wrap
Illustration

next

nothing more
on the right
hand side of
q0next

q0

Jarvis Wrap
Illustration

q0

q1

Jarvis Wrap
Illustration

q0

q1

next

Jarvis Wrap
Illustration

q0

q1

next

Jarvis Wrap
Illustration

q0

q1

next

Jarvis Wrap
Illustration

q0

q1

q2

Jarvis Wrap
Illustration

q0

q1

q2

Jarvis Wrap
Illustration

q0

q1

q2

q3

Jarvis Wrap
Illustration

q0

q1

q2

q3

q4

Jarvis Wrap
Illustration

q0

q1

q2

q3

q4

pnow is q0

Let’s take a break

Problem Description

given :

to find :

A finite set of points P ⊆ ℝ2

The convex hull of P

Convex Hull • Points are in general position !

• No three points lie on the
same line

• No two points share the same
x-coordinate

• Output: We want to determine the vertices of the convex polygon. So, we want to
determine a sequence that defines the vertices in a
counterclockwise order.

(q0, q1, …, qh−1), h ≤ n,

Problem Description

given :

to find :

A finite set of points P ⊆ ℝ2

The convex hull of P

Convex Hull • Points are in general position !

• No three points lie on the
same line

• No two points share the same
x-coordinate

• Output: We want to determine the vertices of the convex polygon. So, we want to
determine a sequence that defines the vertices in a
counterclockwise order.

(q0, q1, …, qh−1), h ≤ n,

Convex Hull
Local Improvement

Idea :

Given a sequence of points , if a point lies to the

left of the line segment from to , remove from the
sequence

(q0, q1, …, qh−1) qi
qi−1 qi+1 qi

Local Repair
Algorithm

sorted

on the left oflower rand
(left to right)

upper rand
(right to left)

(q₀, ..., qₕ) is lower hull of {p₁, ..., pᵢ}

local repair

local repair

setting new points

setting new points

O (nlogn)

O(nlogn) sorting, O(n) local repair

in increasing x-
coordinate
order

Local Repair
Illustration

Local Repair
Illustration

q0

Local Repair
Illustration

q0

q1

Local Repair
Illustration

q0

q1

p3q1 on the left of qop3 ,
remove q1

Local Repair
Illustration

q0

q1q1 on the left of qop3 ,
remove q1

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

Local Repair
Illustration

q0

q1

q2

q3

Local Repair
Illustration

q0

q1

q2

q3

Local Repair
Illustration

q0

q1

q2

q3

We’ve reached the
endpoint. Let’s do the

same in the other
direction

Local Repair
Illustration

q0

q1

q2

q3

q4

Local Repair
Illustration

q0

q1

q2

q3

q4

Local Repair
Illustration

q0

q1

q2

q3

q4

Local Repair
Illustration

q0

q1

q2

q3

q4

q5

Local Repair
Illustration

q0

q1

q2

q3

q4

q5

Local Repair
Illustration

q0

q1

q2

q3

q4

q5

Local Repair
Illustration

q0

q1

q2

q3

q4

q5

Local Repair
Illustration

q0

q1

q2

q3

q4q5

Local Repair
Illustration

q0

q1

q2

q3

q4q5

q6

Local Repair
Illustration

q0

q1

q2

q3

q4q5

q6

Local Repair
Illustration

q0

q1

q2

q3

q4q5

Primality Tests II

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime ? ?n

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

π(11) =

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

π(11) = 5

Problem Description
Primality Test

given :

to find :

A number n ∈ ℕ

is prime has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function : π(x) π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

Naive Algorithm
Primality Test

1) For all test if divides a ≤ n a n

Easy randomized test
Primality Test

1) Choose uniformly at randoma ∈ {1,2, . . . , n}
2) if divides then return ‘not prime’

3) else return ‘prime’

a n

DiskMat 🤢
Refresher

gcd : greatest common divisor

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1]

 : the multiplicative group modulo n ℤ*n
ℤ*n = {a ∈ {1,2,…, n − 1} ∣ gcd(a, n) = 1}

Euclidean Primality Test
Primality Test

1) Choose uniformly at randoma ∈ {1,2, . . . , n}
2) if then return ‘not prime’

3) else return ‘prime’

gcd(a, n) > 1

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1] gcd := greatest common divisor

can be calculated in O((log nm)3)

• if n is a prime : always correct

{a ∈ [1,n − 1] : gcd(a, n) = 1}
n − 1

=
|ℤ*n |
n − 1

• if n is not a prime : it might return a wrong answer with the probability

DiskMat 🤢
Refresher

Fermat’s Little Theorem

Carmichael Numbers

 is primen ∈ ℕ ⟹
For all with a 0 < a < n

 an−1 ≡ 1 (mod n)

 is not primen⟹
There exists with a 0 < a < n

 an−1 ≢ 1 (mod n)

 holds for all coprime to for the carmichael
number, FLT fails to detect

an−1 ≡ 1 (mod n) a n

561 = 3 ⋅ 11 ⋅ 17

ex:

for every s.t. gcd(= 1 , it holds that a a,561) a560 ≡ 1 (mod 561)

it gives false positive, “probably prime”

Miller-Rabin Test
Primality Test

• if n is a prime : always correct
• if n is composite : it returns “not prime” with the probability ≥ 3/4

Questions

Nil Ozer

Feedbacks , Recommendations

