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Exercise Session 1 
Introduction



Outline
• Logistics 

• A&W Overview 

• Exam 

• How to study for A&W 

• Get to know me/you 

• Warm up exercise



Logistics

• Exercise Session here and on wednesday only for today !!  

• Normally : Thursdays, 16:15 - 18:00 , HG E 33.1



Logistics

• Programming Exercise 

• Every week, starting on 2. week  

• CodeExpert 

• 2 points, automatically graded 

• Theory Exercise 

• Even weeks, starting on the 2. week 

• until 10:00 on the following Thursday 

• 2 points, TA graded

• Peer Grading Exercise 

• Odd weeks, starting on the 3. week 

• 2 points (upload + peer grading), TA graded

• Mini Quiz 

• Even weeks, starting on the 2. week 

• First ~5 min of the exercise class 

• 2 points



Logistics

W1 Warm up exercise

W2 Mini Quiz Theory Exercise Programming 
Exercise

W3 Peer Grading 
Exercise

Programming 
Exercise

W4 Mini Quiz Theory Exercise Programming 
Exercise

W5 Peer Grading 
Exercise

Programming 
Exercise

W6 Mini Quiz Theory Exercise Programming 
Exercise

W7 Peer Grading 
Exercise

Programming 
Exercise

…



Logistics
• Bonus Point Calculation  

• >= %80 of all points  ->  0.25 bonus 

• Otherwise :  

• Final Grade Calculation 



Website Introduction 
www.nilozer.com

http://www.nilozer.com


A&W Overview



A&W Standpoint at ETH CS

• Algorithms Part 

• A&D (1. Semester)  

• APC (Algorithms , Probability and Computing) (5. Semester)  

• Probability Part 

• WuS (Wahrscheinlichkeit und Statistik) (4. Semester) 



Exam



Exam



Exam

6 Parts  
First 4 parts :  each 10 points (similar to minitest) 

Part 5 :  written tasks, 20 points in total (similar to theory exercises)  

Part 6 :  2 programming tasks, each 10 points (similar to CodeEx) 



Exam

Moodle Written Theory Programming



Mock Exam 2022

Moodle ~1 points



Mock Exam 2022

Moodle
~5 points



Mock Exam 2022

Moodle
~5 points



Mock Exam 2022

Moodle
~2 points



Mock Exam 2022

Moodle
~2 points



Mock Exam 2022

Written Theory

on paper



Mock Exam 2022

Programming

• One probability task 

• One flow task
~10 points each 



Point Distribution

Moodle

Programming

Written Theory

based on mock exam 

25%

25%

50%



Point Distribution  + Weekly Exercises

W1 Warm up exercise

W2 Mini Quiz Theory Exercise Programming 
Exercise

W3 Peer Grading 
Exercise

Programming 
Exercise

W4 Mini Quiz Theory Exercise Programming 
Exercise

W5 Peer Grading 
Exercise

Programming 
Exercise

W6 Mini Quiz Theory Exercise Programming 
Exercise

W7 Peer Grading 
Exercise

Programming 
Exercise



Point Distribution  + Weekly Exercises

Moodle Written + Moodle Programming

W1 Warm up exercise

W2 Mini Quiz Theory Exercise Programming Exercise

W3 Peer Grading Exercise Programming Exercise

W4 Mini Quiz Theory Exercise Programming Exercise

W5 Peer Grading Exercise Programming Exercise

W6 Mini Quiz Theory Exercise Programming Exercise

W7 Peer Grading Exercise Programming Exercise



I got you !



How to study for A&W 
During Semester

• Attend all lectures !  

• Skript ! Some recap parts from A&D in the beginning  

• Always come to the exercise session. Even if you fall back !  

• Try to solve all exercises (of all types) Coding weekly !  

• Ask questions ! exercise session , breaks, WhatsApp group, email , Moodle forum 

• Summaries, Recaps 

• Feedback Feedback pools by me or contacting me directly 



Get to know me



Get to know you



Join the whatsapp group ! 



Let’s take a break



Warm up Exercise Sheet



Recap
Walk vs Path

1

52

3

4

walk 

path 

Is it a walk? Is it a path? 

(5, 1, 3, 2, 1)

(5, 1, 3)

✅ ❌ 

✅ ✅ 



Warm up Exercise Sheet

Paths of length 4 (i.e. with 4 edges) from a to e ? 

Exercise 1 : Paths, Walks, Circles



⟨a,b,c,f,e⟩

Paths of length 4 (i.e. with 4 edges) from a to e ? 

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



Walks of length 4 (i.e. with 4 edges) from a to e ? 

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



⟨a,b,c,f,e⟩, ⟨a,b,c,b,e⟩, ⟨a,b,e,d,e⟩, ⟨a,b,e,f,e⟩, ⟨a,b,e,b,e⟩, ⟨a,b,a,b,e⟩, ⟨a, b, 
a,d,e⟩, ⟨a,d,a,d,e⟩, ⟨a,d,a,b,e⟩, ⟨a,d,e,d,e⟩, ⟨a,d,e,b,e⟩, ⟨a,d,e,f,e⟩

Walks of length 4 (i.e. with 4 edges) from a to e ? 

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



Recap
Closed Walk vs Cycle

1

52

3

4

walk 

Cycle 

Is it a closed walk? Is it a cycle? 

(5, 1, 3, 1, 5)

(1, 3, 2, 1)

✅ ❌ 

✅ ✅ 

Closed 



Cycles in G ? 

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



Cycles in G ? 

⟨a,b,d,e,a⟩, ⟨b,c,f,e,b⟩ and ⟨a,b,c,f,e,d,a⟩

+ changing the starting points ! 

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



Closed Walks in G ? 

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



Closed Walks in G ? 

Infinitely many

Warm up Exercise Sheet
Exercise 1 : Paths, Walks, Circles



Warm up Exercise Sheet
Exercise 2 : Asymptotic Growth



Recap
Mini cheat-sheet

Sums

Factorial

Geometric series : From Exercise Sheet 1 : 



Warm up Exercise Sheet
Exercise 3 : Induction



Warm up Exercise Sheet
Exercise 4 : A General Feature of Graphs



Warm up Exercise Sheet
Exercise 5 : Algorithms



A&W

Nil Ozer

Exercise Session 2 
Connectivity



Outline
• Minitest 

• Connectivity 

• Articulation Points and Bridges 

• (Cycles)



Minitest



A&W Overview



Connectivity



Connectivity
Intuition 

How many connections can fail without cutting off the communication ? 

measuring fault tolerance of a network ! 

CN (4. semester)



Connectivity
Definitions

• A  is connected if  

for  there exists an u-v path

G = (V, E)

∀u, v ∈ V, u ≠ v

not connected



Connectivity
Definitions

• A  is connected if  

for  there exists an u-v path

G = (V, E)

∀u, v ∈ V, u ≠ v

connected



Connectivity
“Removing” 

a b c

Remove the edge {a,b} 



Connectivity
“Removing” 

a b c

Remove the edge {a,b} 



Connectivity
“Removing” 

a b c

Remove the edge {a,b} 



Connectivity
“Removing” 

a b c

Remove the vertex b 



Connectivity
“Removing” 

a b c

Remove the vertex b 



Connectivity
“Removing” 

a b c

Remove the vertex b 



Connectivity
“Removing” 

a c

Remove the vertex b 



Connectivity
Definitions

• A  is k-edge connected if  

 with   ,  is connected

G = (V, E)

∀X ⊆ E |X | < k G(V, E ∖ X)

“ The G remains connected whenever fever than k edges are removed” 

“ At least k edges must be removed to make the G disconnected” 



Connectivity
Example



Connectivity
Example

1-edge connected



Connectivity
Example

1-edge connected

becomes 
disconnected after 
removing 1 edge 



Connectivity
Example



Connectivity
Example

2-edge connected



Connectivity
Example

2-edge connected

becomes 
disconnected after 
removing 2 edges



Connectivity
Definitions

• A  is k - (vertex) connected if  

•  

•  with   ,  is connected

G = (V, E)

|V | ≥ k + 1

∀X ⊆ V |X | < k G[V∖X]

“ The G remains connected whenever fever than k vertices are removed” 

“ At least k vertices must be removed to make the G disconnected” 

minitest 8,9



Connectivity
Lemma

k-vertex 
connectivity ≤ k-edge 

connectivity 
minimum 

degree≤

minitest 3



Connectivity
Menger’s Theorem

G is k-edge connected ⟺
For  there 
exists k edge-disjoint u-v 

paths

∀u, v ∈ V, u ≠ v

G is k-vertex connected ⟺
For  there 

exists k internally-vertex-disjoint 
u-v paths

∀u, v ∈ V, u ≠ v

they share the starting 
and ending vertex



Let’s take a break



Articulation Points and Bridges
Intuition

vulnerabilities in 
a network

single points 
whose failure 

would split the 
network into 2 or 

more 
components



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is an articulation point (cut vertex) iff  is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]



Articulation Points and Bridges
Definitions

articulation points

• Let  be connected.  

A vertex  is an articulation point (cut vertex) iff  is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is an articulation point (cut vertex) iff  is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]



Articulation Points and Bridges
Definitions

articulation points

• Let  be connected.  

A vertex  is an articulation point (cut vertex) iff  is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is an articulation point (cut vertex) iff  is not connected

G = (V, E)

v ∈ V G[V ∖ {v}]



Articulation Points and Bridges
Definitions

• Let  be connected.  

An edge  is a bridge (cut edge) iff  is not connected

G = (V, E)

e ∈ E G − e



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is a bridge (cut edge) iff  is not connected

G = (V, E)

e ∈ E G − e

bridges



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is a bridge (cut edge) iff  is not connected

G = (V, E)

e ∈ E G − e



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is a bridge (cut edge) iff  is not connected

G = (V, E)

e ∈ E G − e

bridges



Articulation Points and Bridges
Definitions

• Let  be connected.  

A vertex  is a bridge (cut edge) iff  is not connected

G = (V, E)

e ∈ E G − e



Articulation Points and Bridges
Lemma

• Let  be a connected graph.G = (V, E)

 is a bridge{x, y} ∈ E ⇒
deg(x) = 1   

or  

x is an articulation point

minitest 2



Articulation Points and Bridges
Definition

• Let  be a graph.  

The equivalence relation  on  is defined as : 

G = (V, E)

∼ E

e ∼ f :=
e = f

 and  are on a common cycle e f

or 

minitest 5



Articulation Points and Bridges
Definition

• The equivalence classes are named as Blocks

Articulation point is the critical 
point that holds blocks together.  If 
a graph has an articulation point, it 
serves as the only connection 
between two or more blocks. 

2 blocks always 
intersect at an 

articulation point.

Lemma : 



Articulation Points and Bridges
Definition

• Let  be connected 

The Block-Graph of G is the bipartite Graph  with   

• A = {Articulation points of G} 

• B = {Block of G } 

•  is incident to an edge in 

G = (V, E)

T = (A ⊎ B, ET)

∀a ∈ A, b ∈ B : {a, b} ∈ ET ⟺ a b



Articulation Points and Bridges
Lemma

• Let  be connected 

The Block-Graph of G is the bipartite Graph  with   

• A = {Articulation points of G} 

• B = {Block of G } 

•  is incident to an edge in 

G = (V, E)

T = (A ⊎ B, ET)

∀a ∈ A, b ∈ B : {a, b} ∈ ET ⟺ a b

If G is connected , then the Block-Graph of G is a tree 



Articulation Points and Bridges
Finding articulation points

shortest paths

articulation points



Articulation Points and Bridges
Finding articulation points

+ Calculate low[v] 



Articulation Points and Bridges
Finding articulation points

+

Calculate low[v] 

low[v] := the smallest dfs-number 
that one can reach from v with a 
directed path consisting of (any 
number of) tree edges and 
maximum one remaining edge . 



Articulation Points and Bridges
Finding articulation points

+

Calculate low[v] 

low[v] := the smallest dfs-number 
that one can reach from v with a 
directed path consisting of (any 
number of) tree edges and 
maximum one remaining edge . 



Articulation Points and Bridges
Finding articulation points

+

Calculate low[v] 

low[v] := the smallest dfs-number 
that one can reach from v with a 
directed path consisting of (any 
number of) tree edges and 
maximum one remaining edge . 



Articulation Points and Bridges
Finding articulation points

•DFS from A&D  

•pre-number from A&D is 
now the DFS number 

•back edge/forward edge/
cross edge are now all 
remaining edges

1 ) Find DFS numbers



Articulation Points and Bridges
Finding articulation points

• tree edges in the 
increasing dfs-number 
direction 

•remaining edges in 
decreasing dfs-number 
direction

tree edges
remaining edges

2) Orientation



Articulation Points and Bridges
Finding articulation points

if (v,w) is a remaining edge

if (v,w) is a tree edge

3) Calculate low[v]



Articulation Points and Bridges
Finding articulation points

A vertex v is an articulation point iff  

1)  v ≠ root and v has a child u in 
DFS-Tree with low[u] ≥ dfs[v] or  

2) v = root and v has at least 2 
children in DFS-Tree



Articulation Points and Bridges
Finding articulation points

A tree edge   e = (v,w) is a bridge iff  

low[w] > dfs[v]  

Remaining edges can never be a bridge 



Cycles



Cycles
Definitions

• Hamlitonian Cycle 

• A cycle in G that contains every vertex exactly once 

• Eulerian Cycle  

• A closed walk in G that contains every edge exactly once

minitest 4,6,7



Cycles
Hamiltonian Cycle Examples



Cycles
Hamiltonian Cycle Examples



Cycles
Hamiltonian Cycle Examples

Grid Graph 

Let m, n ≥ 2

A  x  Grid has a hamiltonian cycle  iff    x  is even n m n m



Cycles
Hamiltonian Cycle Examples

d-dimensional Hypercube  Hd

V := {0,1}d

E :=  “All vertex pairs that differ in only one coordinate” 

Has a hamiltonian cycle for all d ≥ 2



A&W

Nil Ozer

Exercise Session 3
Cycles , TSP



A&W Overview



Outline

• Some logistics 

• Connectivity Kahoot 

• Cycles 

• TSP



• For every exercise, you’ll receive feedback from me on the exercise 
session next week !  

• Anki cards 

• CodeExpert videos 

• Regular recap kahoots in class on the weeks without the minitest

Logistics



Connectivity Kahoot



Cycles



Cycles
Definitions

• Hamlitonian Cycle 

• A cycle in G that contains every vertex exactly once 

• Eulerian Cycle  

• A closed walk in G that contains every edge exactly once



Cycles
Hamiltonian Cycle Examples



Cycles
Hamiltonian Cycle Examples



Cycles
Hamiltonian Cycle Examples

Grid Graph 

Let m, n ≥ 2

A  x  Grid has a hamiltonian cycle  iff    x  is even n m n m



Cycles
Hamiltonian Cycle Examples

d-dimensional Hypercube  Hd

V := {0,1}d

E :=  “All vertex pairs that differ in only one coordinate” 

Has a hamiltonian cycle for all d ≥ 2



Eulerian Cycle
Lemma

A connected G has a 
eulerian Cycle

⟺ Every vertex has an even 
degree



Let’s take a break



Hamiltonian Cycle

Given a Graph  , does G have a hamiltonian cycle ? G = (V, E)

NP - Complete



NP-Complete
Given a Graph  , does G have a hamiltonian cycle ? G = (V, E)

NP - Complete

A problem a  in NP is NP-complete if : 

P : polynomial  

NP : non-deterministic polynomial

a ∈ P ⟹ P = NP
?

Complexity Theory 
TI next semester 

• NP is the set of decision problems solvable in polynomial time 
by a nondeterministic Turing machine.

• NP is the set of decision problems verifiable in polynomial 
time by a deterministic Turing machine.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Deterministic_Turing_machine


Hamiltonian Cycle
Dirac’s Theorem

A G has a hamiltonian 
cycle⟹ and  

the minimum degree  

|V | ≥ 3

δ(G) ≥ |V | /2



Hamiltonian Cycle
DP Approach 

P[S][x] = 
1 , if there exists a 1-x-path that only uses vertices from S

0 , else

For all  with  and all  with   S ⊆ [n] 1 ∈ S x ∈ S x ≠ 1 :

P[ {1,x} ][x] = 1  iff   { 1,x }  E ∈Initialization : 



TSP



TSP
Problem Description

Given : 

To find : 

• A complete Graph Kn of n vertices

• Distances  inbetween every 2 vertexl l : ([n]
2 ) → R

• “shortest round trip” 

∑
e∈E(H)

l(e)min
H : Hamiltonian Cycle

also NP-Complete



Metric TSP
Problem Description

Given : 

To find : 

• A complete Graph Kn of n vertices

• Distances  inbetween every 2 vertexl l : ([n]
2 ) → R

• “shortest round trip” 

∑
e∈E(H)

l(e)min
H : Hamiltonian Cycle

•  satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)



Metric TSP : 2-Approximation
Problem Description

Given : 

To find : 

• A complete Graph Kn of n vertices

• Distances  inbetween every 2 vertexl l : ([n]
2 ) → R

• Hamiltonian Cycle C s.t.  •   satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 2 l(OPT)

where



Metric TSP : 2-Approximation
Algorithm



Metric TSP : 2-Approximation
Algorithm



Metric TSP : 2-Approximation
Algorithm

1. Find the MST  T



Metric TSP : 2-Approximation
Algorithm

1. Find the MST  T



Metric TSP : 2-Approximation
Algorithm

1. Find the MST  T

2. Duplicate all edges of T
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3. Find Eulerian Tour W
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Metric TSP : 2-Approximation
Algorithm

1. Find the MST  T1. Find the MST  T

2. Duplicate all edges of T

3. Find Eulerian Tour W

4. Traverse   once using 
shortcuts s.t. each vertex is visited exactly once

W

 ⇒ Hamiltonian Cycle C
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start
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3. Find Eulerian Tour W

2. Duplicate all edges of T
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l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness
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Metric TSP : 2-Approximation

4. Traverse   once using shortcuts 
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ? 

Goal :
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Definitions

• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

no two edges share common vertices
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• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 
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M

Is this a matching ? 
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• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

Is this a matching ? 

✅ 
1 = {{a,c} , {e,f}}M
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• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

a b

c d e
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no two edges share common vertices

• covered (matched) : 

• A vertex   in a Graph  is covered by , if there exists 
an edge  that contains 
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e ∈ M v
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Definitions

• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching : 

• A Matching  is called a Perfect Matching if every vertex is covered 
by exactly one edge from  

• equivalently, if 

M
M

M =
|V |
2
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Definitions
• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

no two edges share common vertices

a b

c d e

f

Is this a perfect matching ? 

❌ 
c

f

a b

d e

• Perfect Matching : 

• A Matching  is called a Perfect Matching if every vertex is covered 
by exactly one edge from  

M
M



Matching
Definitions
• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching : 

• A Matching  is called a Perfect Matching if every vertex is covered 
by exactly one edge from  

M
M

a b

c d e

f

Is this a perfect matching ? 

✅ 
a b

c d e

f
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• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

no two edges share common vertices

• Perfect Matching : 

• A Matching  is called a Perfect Matching if every vertex is covered 
by exactly one edge from  

M
M

Is this a perfect matching ? 

❌ 



Matching
Definitions

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′ 

M ⊆ M′ |M′ | > |M |

“no edge can be added to this matching”

• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”



• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′ |M′ | > |M |

Matching
Definitions

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′ 

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ? 

✅  ✅ 

“no edge can be added to this matching”

“one can’t find a bigger matching”



Matching
Definitions

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′ 

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ? 

✅ ❌ 

“no edge can be added to this matching”

• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”



Matching
Propositions

•  : inclusion-maximal Matching ,  : cardinality-maximum MatchingMinc Mmax

|Minc | ≥ |Mmax | / 2
Why ? 

Every edge in  must have at least one endpoint in  

Otherwise, that edge would be added to 

Mmax Minc

Minc

|Mmax | ≤ |Endpoints in Minc | = 2 |Minc |

|Minc | ≤ |Mmax |



Matching
Greedy Algorithm

pick an arbitrary edge

remove  and all incident edges in e G

|MGreedy | ≥ |Mmax | / 2  is 
inclusion-maximal

MGreedy

in O( |E | )

why ? 



Matching
Augmenting ? 



Matching
M - Augmenting Path

• Augmenting Path : 

• An augmenting path is an alternating path that starts from and ends on 
unmatched/not covered vertices

“path with edges not in M, in M, … ,  not in M “ 

• Alternating Path : 

• An alternating path is a path that begins with an unmatched/not 
covered vertex whose edges belong alternately to the matching 
and not to the matching



Matching
M - Augmenting Path

❌ 

❌ 

✅ 

Is this an augmenting path ? 

Idea : By swapping along M 
we can improve the 
matching



Matching
Swapping ? 

A ⊕ B

Elements that are in A or in B but not in both

A = {1,2,3}

B = {3,4,5}
A ⊕ B = {1,2,4,5}



Matching
Swapping ? 

   M′ := M ⊕ P

— M-augmenting path P



Matching
Berge’s Theorem

A Matching M is 

(cardinality-) maximum
There’s no M-augmenting path ⟺

Idea : To find the maximum matching, update/improve the matching until 
there is no augmenting path left



Matching
Algorithm

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output  : maximum matching M

Algorithm :  
Start with M = ∅
while  augmenting path ∃ P

M = M ⊕ P
return M

How do we find the 
augmenting path  ? P

bipartite Gs : with BFS 

general Gs  in O( |V | |E | )



Matching
Definitions

• Bipartite Graph :  

• A graph  is bipartite ,  if you can split the set of vertices  into two sets 
 s.t. : 

G V
U, V

E ⊆ { {u, v} : u ∈ U, v ∈ V}

X



Matching
Definitions

• k-regular 

• A graph  is k-regular ,  if every vertex has a degree of k G

deg(v) = k ∀v ∈ V



Matching
Perfect Matching finding

bipartite ? k-regular runtime

✅  2K O(|E|)

✅  k O(|E|)

✅  - O(|V|·|E|)



Matching
Hall’s Marriage Theorem

A bipartite   

has a Matching  with cardinality 

G = (A ∪ B , E)

M |M | = |A |
∀ X ⊆ A : |X | ≤ |N(X) |⟺

N(X) := “neighbours of vertices in X”

Corollary : Every k-regular bipartite G has a 
perfect matching 



Matching
Algorithm - revisit

Idea : Update/improve the matching until there is no augmenting path left

Input : G = (V, E)

Output  : maximum matching M

Algorithm :  
Start with M = ∅
while  augmenting path ∃ P

M = M ⊕ P
return M

How do we find the 
augmenting path  ? P

bipartite Gs : with BFS 

general Gs  in O( |V | |E | )

BFS + this -> O (|V| |E|) 



Matching
BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

L0 := {uncovered vertices from A} A B
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BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A} A B



Matching
BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A} A B



Matching
BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A}
A B

for i = 1 to n 

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}
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Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A}
A B

for i = 1 to n 

if i is odd then

if i is even then

mark vertices from Li as visited
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if a vertex v in Li is not covered : return path to v (backtracking) (M update)
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BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A}
A B

for i = 1 to n 

if i is odd then

if i is even then

mark vertices from Li as visited

i = 1

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

Li := {unvisited neigbours of Li-1 via edges in E\M}

Li := {unvisited neighbours of Li-1 via edges in M}

RESTART
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BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  
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Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A}
A B

for i = 1 to n 

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited

i = 4

if a vertex v in Li is not covered : return path to v (backtracking) (M update)

L1

L1

L2

L2

L3

L0



Matching
BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M
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A B
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Output  : (shortest) augmenting path (if there is one)
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A B

for i = 1 to n 
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Li := {unvisited neigbours of Li-1 via edges in E\M}
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Matching
BFS for augmenting paths

Input : A bipartite   , Matching G = (A ∪ B, E) M

Output  : (shortest) augmenting path (if there is one)

Algorithm :  

Mark L0 as visited 

L0 := {uncovered vertices from A}
A B

for i = 1 to n 

if i is odd then
Li := {unvisited neigbours of Li-1 via edges in E\M}

if i is even then
Li := {unvisited neighbours of Li-1 via edges in M}

mark vertices from Li as visited
if a vertex v in Li is not covered : return path to v (backtracking) (M update)



Matching
Improvement : Hopcroft Karp Algorithm

Input : A bipartite  G = (A ∪ B, E)

Output  : Maximum Matching M

Algorithm :  

Start with M = ∅
while  augmenting path  with BFS∃ P

M = M ⊕ P

return M

Hopcroft-Karp :  

Start with M = ∅
while  augmenting path /∃ P

M = M ⊕ P

k := length of the shortest augmenting path 

find more vertex disjoint augmenting paths of length k

until we have a inclusion-maximal set S of those paths

for all P in S : 

O(|V|1/2﹒(|V|+|E|))



Let’s take a break



TSP II 



Metric TSP : 2-Approximation
Problem Description

Given : 

To find : 

• A complete Graph Kn of n vertices

• Distances  inbetween every 2 vertexl l : ([n]
2 ) → R

• Hamiltonian Cycle C s.t.  •   satisfies the triangle inequalityl
l(x, z) ≤ l(x, y) + l(y, z)

OPT =

l(C) ≤ 2 l(OPT)

where
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4. Traverse   once using shortcuts 
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

3. Find Eulerian Tour W

2. Duplicate all edges of T

1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

l(C) ≤ l(W) = 2 l(T) ≤ 2 OPT(Kn , l)

Correctness

why ? 

Goal :
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To find : 
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• Distances  inbetween every 2 vertexl l : ([n]
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• Hamiltonian Cycle C s.t.  •   satisfies the triangle inequalityl
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Metric TSP : 1.5-Approximation



Algorithm

l(T) ≤ OPT(Kn , l)1. Find the MST  T

2. Duplicate all edges of T 2 l(T) ≤ 2 OPT(Kn , l)

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

Metric TSP : 1.5-Approximation



2. Duplicate all edges of T

1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM
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2. Duplicate all edges of T

1. Find the MST  T l(T) ≤ OPT(Kn , l)

2 l(T) ≤ 2 OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

l(M) ≤
1
2

OPT(Kn , l)
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1. Find the MST  T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

Metric TSP : 1.5-Approximation



1. Find the MST  T l(T) ≤ OPT(Kn , l)

Algorithm

2’. X:= Vertices with odd degree in  T
Find minimal Matching  for XM

l(M) ≤
1
2

OPT(Kn , l)
3. Find Eulerian Tour W

l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)

4. Traverse   once using shortcuts 
s.t. each vertex is visited exactly once

W
 ⇒ Hamiltonian Cycle C

l(C) ≤ l(W) = l(T) + l(M) ≤ 1.5 OPT(Kn , l)
why ? 

Metric TSP : 1.5-Approximation



A&W

Nil Ozer

Exercise Session 5
Coloring



A&W Overview



Outline

• T1 Discussion  

• Matching Kahoot 

• Coloring 

• Minitest 2 - coloring discussion



• 1.c : Reflexivity argument accepted  

• Watch out for the comments ! 

• Keep up the good work ! 👏👏👏 

• Questions, issues … Let me know ! 

T1
Feedback + Discussion



• Anki card approach changed (instead we have kahoots for now)  

• Matching kahoot this week 

• Cycles + TSP kahoot next week … 

• T2 (peer grading 1) ??  

• Namings:  

• T1(theoretical exercise 1) , T2(peer grading 1), T3(theoretical exercise 2) … 

Some Announcments



Matching Kahoot



Let’s take a break



Coloring



Coloring
Intuition



edges are our enemies

Coloring
Intuition

Matching Coloring

pairing adjacent vertices 
without conflicts  

(pairing non-adjacent edges) 

seperating adjacent vertices

ensure that selected edges 
don’t touch the same vertex

ensure that the connected 
vertices have distinct colors

edges are our friends



edges are our enemies

Coloring
Intuition

pairing adjacent vertices without conflicts  

(pairing non-adjacent edges) 

seperating adjacent vertices

ensure that selected edges don’t touch the 
same vertex

ensure that the connected vertices have 
distinct colors

edges are our friends

k-matched G is also (k-1)-matched (k-1)-colored G is also k-colored

simply remove 1 edge simply change one node’s color

Matching Coloring



Coloring
Definitions

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Color vertices in a way that no two vertices that 
share an edge are of the same color
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Examples
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Is this a coloring ? 
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• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

Is this a coloring ? 
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Definitions

• (Vertex-) Coloring : 

• A (vertex-) coloring of  with k colors is a mapping 
 s.t.    for all edges 

G = (V, E)
c : V → [k] c(u) ≠ c(v) {u, v} ∈ E

• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed 
to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G



Coloring
k-partite

• General version of the bipartite 

• A graph  is called k-partite if  

• the vertex set  can be divided into k disjoint sets  

• s.t. for every edge  ,  and  belong to different sets  and  

where 

G = (V, E)

V V = V1 ∪ V2 ∪ . . . ∪ Vk

(u, v) ∈ E u v Vi Vj

i ≠ j
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Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite
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Coloring
Examples
• Chromatic Number :  

• The chromatic number  is the minimum number of colors needed to color a graph 

• equivalent :   is k-partite

χ(G)

χ(G) ≤ k ⟺ G

χ(G1) = 3 χ(G1) = 2 χ(G1) = 3 χ(G1) = 2

Do you notice something ? 



Coloring
Problem

For all  ,  given a graph  ,  

is  ? 

k ≥ 3 G = (V, E)

χ(G) ≤ k

NP - Complete



NP-Complete
For all  ,  given a graph  , is  ? k ≥ 3 G = (V, E) χ(G) ≤ k

NP - Complete

A problem a  in NP is NP-complete if : 

P : polynomial  

NP : non-deterministic polynomial

a ∈ P ⟹ P = NP
?

Complexity Theory 
TI next semester 

• NP is the set of decision problems solvable in polynomial time 
by a nondeterministic Turing machine.

• NP is the set of decision problems verifiable in polynomial 
time by a deterministic Turing machine.

https://en.wikipedia.org/wiki/Nondeterministic_Turing_machine
https://en.wikipedia.org/wiki/Deterministic_Turing_machine


• Pick an arbitrary order of the vertices :  

•  

• for i = 2 to n do  

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

Coloring
Greedy Algorithm

color the first vertex with color 1 

min color k s.t. it’s not equal to the color of the neighbors of  that are already coloredvi



Coloring
Greedy Algorithm

c : 

k indexing for colors : 

i 1 2 3 4 5 6 7 8

c[vi]
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1

2

3

4

5

6

7
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k = 1 

considering ks 

c : 
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c[vi] 1 1 2 2 2
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Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2

k = 2 

✅ k = 3 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3

k = 2 

✅ k = 3 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3

k = 2 

k = 3 

✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2 

k = 3 

✅ 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1

k = 2 

k = 3 

✅ 

k = 4 



Coloring
Greedy Algorithm

k indexing for colors : 

1

2

3

4

5

6

7

8

k = 1 

considering ks 

c : 
i 1 2 3 4 5 6 7 8

c[vi] 1 1 2 2 2 3 1 4

k = 2 

k = 3 

✅ 

k = 4 

done



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

Δ(G) := maximum degree in G

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)

Greedy Algorithm - Observations
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Coloring
Greedy Algorithm - Observations

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)  is k-partiteχ(G) ≤ k ⟺ G

Δ(G) := maximum degree in G



Coloring

• For all orders of vertices  

• the Greedy Algorithm needs  +1 colors 

V = {v1 , . . . , vn}

Δ(G)

• There exists an order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

χ(G)

• There exists bipartite Graphs and order of vertices  for which 

• the Greedy Algorithm needs   colors

V = {v1 , . . . , vn}

|V | / 2

Greedy Algorithm - Observations



Coloring

• For the chosen order of vertices  s.t.  

•        

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

k gets increased here

Greedy Algorithm - Observations



Heuristic Meaning



Coloring
Heuristic + Greedy Algorithm

• For the chosen order of vertices  s.t.  

•        

• the Greedy Algorithm needs at most k +1 colors

V = {v1 , . . . , vn}

|N(vi) ∩ {v1, …, vi−1}} | ≤ k ∀ 2 ≤ i ≤ n

• Pick the order of the vertices using the heuristic :  

•  

• for i = 2 to n do  

•

V = {v1 , . . . , vn}

c[v1] ← 1

c[vi] ← min{k ∈ ℕ ∣ k ≠ c[u] for all u ∈ N(vi) ∩ {v1, …, vi−1}}

color the first vertex with color 1 

min color k s.t. it’s not equal to the color of the neighbors of  that are already coloredvi

• Heuristic :  

• Vertex with the smallest degree. Delete   

• Vertex with the smallest degree in the remaining G. Delete  

• Iterate

vn := vn

vn−1 := vn−1



Coloring
Heuristic + Greedy Algorithm  - Observations

• If in every subgraph of G , there exists a vertex with degree  k  

• heuristic provides an order  s.t. the Greedy Algorithm needs 
k+1 colors

≤

v1, . . . vn

• For trees heuristic+greedy finds a coloring with 2 colors 

• For planar graphs heuristic+greedy finds a coloring with  6 colors 

• If G is connected and there exists  with deg(v) <  

heuristic (or bfs/dfs)+ greedy  finds a coloring with  colors 

• If the G is 3-colorable, then one can color it in O(|V| + |E|) time with O( ) colors

≤

v ∈ G Δ(G)

≤ Δ(G)

|V |

it doesn’t hold only when the 
graph is regular:    (deg(v) = ∀v ∈ V
Δ(G)



Coloring
Swapping Color Classes Trick



Articulation Points and Bridges
Definition

• The equivalence classes are named as Blocks

Articulation point is the critical 
point that holds blocks together.  If 
a graph has an articulation point, it 
serves as the only connection 
between two or more blocks. 

2 blocks always 
intersect at an 

articulation point.

Lemma : 



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors

?



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring
Swapping Color Classes Trick

• For all Block-Graphs , if every block can be colored with k colors 

• G can be colored with k colors



Coloring

• All Graphs  

• can be colored in O(|E|) time with  + 1 colorsΔ(G)

Brook’s Theorem

•   ,    ,  G connected 

• can be colored in O(|E|) time with  colors

G ≠ Kn G ≠ C2n+1

Δ(G)

Brook’s Theorem



Minitest 2 - rest
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Nil Ozer
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Probability I 



A&W Overview



Outline

• Minitest 3  

• T2 Discussion  

• Cycles + TSP Kahoot 

• Formelsammlung 

• Probability Theory



Minitest 3



• Watch out for the comments ! 

• Keep up the good work ! 👏👏👏 

• Questions, issues … Let me know !  

• After the weekend

T2
Feedback + Discussion



Cycles + TSP Kahoot



Let’s take a break



Probability Theory



Formelsammlung



Probability Theory
Importance for CS

• A&W 

• NumCS 

• WuS 

• IML 

• InfoSec

• Information Retrieval  

• Data Science 

• Anything ML related 

• Anything AI related



Probability Theory
Importance for CS

LEARN IT ONCE ! 



Basic Terms of Discrete Probability Space

• Elementary Event   (Elementarereignis) : A single outcome of the experiment 

• Sample Space  (Ergebnismenge) : The set of all possible outcomes  

• Elementary Probability   (Elementarwahrcheinlichkeit) : Probability of an elementary 
event 

ωi

Ω Ω = {ω1, ω2, . . . }

Pr[ωi]

Probability Theory

• Event  (Ereignis) : A subset of the sample space ( ) 

• Complementary event  (Komplementärereignis) : All outcomes not in E  

E E ⊆ Ω

E E := Ω \ E



Pr[ ] Properties

•  

•  

• Probability of an event E : 

0 ≤ Pr[ωi] ≤ 1

∑
ω∈Ω

Pr[ω] = 1

Pr[E] := ∑
ω∈E

Pr[ω]

Probability Theory



Pr[ ] Properties

•  

•  

• Probability of an event E : 

0 ≤ Pr[ωi] ≤ 1

∑
ω∈Ω

Pr[ω] = 1

Pr[E] := ∑
ω∈E

Pr[ω]

Probability Theory

• For all events  

•  

•  

•  

•

A, B, A1, A2, . . .

Pr[∅] = 0 , Pr[Ω] = 1

0 ≤ Pr[A] ≤ 1

Pr[A] = 1 − Pr[A]

A ⊆ B ⟹ Pr[A] ≤ Pr[B]



Examples I 



Addition Rule
Probability Theory

Events   are 
pairwise disjoint

A1, . . . , An Pr [
n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai]

Infinite set of events 
 are pairwise 

disjoint
A1, A2 . . . Pr [

∞

⋃
i=1

Ai] =
∞

∑
i=1

Pr[Ai]

⟹

⟹

pairwise disjoint : For all pairs  with  :  Ai, Aj i ≠ j Ai ∩ Aj = ∅



Probability Theory

Events   are 
pairwise disjoint

A1, . . . , An

⟹

Boolean Inequality

Addition Rule Boolean Inequality

For arbitrary events   
A1, . . . , An

Pr [
n

⋃
i=1

Ai]
n

∑
i=1

Pr[Ai]≤Pr [
n

⋃
i=1

Ai]
n

∑
i=1

Pr[Ai]=



Inclusion-Exclusion Principle (Siebformel) 
Probability Theory

For events  A1, . . . , An

Pr [
n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai] − ∑
1≤i1<i2≤n

Pr[Ai1 ∩ Ai2] + ⋯

+(−1)l+1 ∑
1≤i1<⋯<il≤n

Pr[Ai1 ∩ ⋯ ∩ Ail] + ⋯

+(−1)n+1 Pr[A1 ∩ ⋯ ∩ An] .



Inclusion-Exclusion Principle (Siebformel) 
Probability Theory Pr [

n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai] − ∑
1≤i1<i2≤n

Pr[Ai1 ∩ Ai2] + ⋯

+(−1)l+1 ∑
1≤i1<⋯<il≤n

Pr[Ai1 ∩ ⋯ ∩ Ail] + ⋯

+(−1)n+1 Pr[A1 ∩ ⋯ ∩ An] .

To find the cardinality of the union of n sets: 

1. Include the cardinalities of the sets. 

2. Exclude the cardinalities of the pairwise intersections. 

3. Include the cardinalities of the triple-wise intersections. 

4. Exclude the cardinalities of the quadruple-wise intersections. 

5. Include the cardinalities of the quintuple-wise intersections. 

6. Continue, until the cardinality of the n-tuple-wise intersection is included 
(if n is odd) or excluded (n even). 



Inclusion-Exclusion Principle (Siebformel) 
Probability Theory Pr [

n

⋃
i=1

Ai] =
n

∑
i=1

Pr[Ai] − ∑
1≤i1<i2≤n

Pr[Ai1 ∩ Ai2] + ⋯

+(−1)l+1 ∑
1≤i1<⋯<il≤n

Pr[Ai1 ∩ ⋯ ∩ Ail] + ⋯

+(−1)n+1 Pr[A1 ∩ ⋯ ∩ An] .

To find the probability of the union of n sets: 

1. Include the probability of the sets. 

2. Exclude the probability of the pairwise intersections. 

3. Include the probability of the triple-wise intersections. 

4. Exclude the probability of the quadruple-wise intersections. 

5. Include the probability of the quintuple-wise intersections. 

6. Continue, until the probability of the n-tuple-wise intersection is included 
(if n is odd) or excluded (n even). 



Examples II 



Laplace-Space
Probability Theory

• Laplace-Space  : 

• A finite probability space where all outcomes/elementary events have 
the same probability

Ω = {ω1, ω2, . . . , ωn}

Pr[ωi] =
1
n for all i = 1 , . . . , n

Pr[A] =
|A |
|Ω |



Combinatorics
Probability Theory

repetition 
allowed

repetition not 
allowed

order does not matterorder matters

nk

nk

(n + k − 1
k )

(n
k)

drawing k elements from n options
# different ways of 



Combinatorics
Probability Theory

Q : Create a 3-digit password using digits 0-9.

Repetition : 

Order : 

allowed

matters

Formula : 

A : 

nk

• n = 10  

• There are 10 options  

• digits 0-9

• k = 3 

• We draw 3 elements in order 

• password length is 3

103 = 10 ⋅ 10 ⋅ 10 = 1000



Combinatorics
Probability Theory

Q : Choose 3 students to present one after another from a group of 5

Repetition : 

Order : 

not allowed

matters

Formula : 

A : 

nk

• n = 5  

• There are 5 options  

• student group of 5

• k = 3 

• We draw 3 elements in order 

• 3 students will present

53 = 5 ⋅ 4 ⋅ 3 = 60
nk := n ⋅ (n − 1) ⋅ (n − 2)⋯(n − k + 1)

k Faktoren



Combinatorics
Probability Theory

Q : You have 6 friends. Choose 2 of them to go on a trip. 

Repetition : 

Order : 

not allowed

doesn’t matter

Formula : 

A : 

(n
k)

• n = 6  

• There are 6 options  

• you have 6 friends

• k = 2 

• We draw 2 elements without order 

• 2 friends will come

(6
2) = ( 6!

2! ⋅ (6 − 2)!) = ( 6!
2! ⋅ 4!) = 15

(6
2) = (6 ⋅ 5

1 ⋅ 2) = 15



Combinatorics
Probability Theory

Q : Buy 4 scoops of ice cream from 3 flavors (vanilla, chocolate, strawberry)

Repetition : 

Order : 

allowed

doesn’t matter

Formula : 

A : 

(n + k − 1
k )

• n = 3  

• There are 3 options  

• 3 flavors

• k = 4 

• We draw 4 elements without order 

• 4 scoops of ice cream

(3 + 4 − 1
4 ) = (6

4) = 15

Do you notice something ? 



Combinatorics
Probability Theory

Q : Buy 4 scoops of ice cream from 3 flavors (vanilla, chocolate, strawberry)

Repetition : 

Order : 

allowed

doesn’t matter

Formula : 

A : 

(n + k − 1
k )

• n = 3  

• There are 3 options  

• 3 flavors

• k = 4 

• We draw 4 elements without order 

• 4 scoops of ice cream

(3 + 4 − 1
4 ) = (6

4) = 15 = (6
2)

Do you notice something ? 



Conditional Probability
Probability Theory

the probability that event A will occur if we 
already know that event B has occurred

• conditional probability : 

• Let A and B be arbitrary events with   . The conditional 
probability  of  given B is

Pr[B] > 0
Pr[A |B] A

Pr[A |B] :=
Pr[A ∩ B]

Pr[B]

Pr[A ∩ B] = Pr[A |B] ⋅ Pr[B]
Pr[A ∩ B] = Pr[B |A] ⋅ Pr[A]



Conditional Probability - Theorems
Probability Theory



Examples III 



• Events  ,  and  are independent , if A B C

Conditional Independence
Probability Theory

• conditional independence : 

• Event  and  are independent , if A B

Pr[A ∩ B] = Pr[A] + Pr[B]

Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Pr[A ∩ B ∩ C] = Pr[A] ⋅ Pr[B] ⋅ Pr[C]

Pr[A ∩ C] = Pr[A] ⋅ Pr[C]
Pr[B ∩ C] = Pr[B] ⋅ Pr[C]



Minitest 3 - Discussion



A&W

Nil Ozer

Exercise Session 7
Probability II



A&W Overview



Outline
• Coloring Kahoot 

• Probability Theory II 

• Conditional independence 

• Random variables 

• Expected value , Variance 

• Distributions



Coloring Kahoot



Let’s take a break



Probability Theory



• Events  ,  and  are independent , if A B C

Conditional Independence
Probability Theory

• conditional independence : 

• Event  and  are independent , if A B

Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Pr[A ∩ B] = Pr[A] ⋅ Pr[B]

Pr[A ∩ B ∩ C] = Pr[A] ⋅ Pr[B] ⋅ Pr[C]

Pr[A ∩ C] = Pr[A] ⋅ Pr[C]
Pr[B ∩ C] = Pr[B] ⋅ Pr[C]



Conditional Independence - Formelsammlung
Probability Theory



Random Variable
Probability Theory

• random variable X :  

• A random variable   is a measurable function  from a 
sample space   as a set of possible outcomes to real numbers

X X : Ω → ℝ
Ω

Random process Outcomes  Numbers→

X = {1 if heads
0 if tails

Flipping a coin

 Y = Sum of the upward faces 
after rolling 8 dices

Rolling 8 dices

https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Outcome_(probability)


Random Variable
Probability Theory

• random variable X :  

• A random variable   is a measurable function  from a 
sample space   as a set of possible outcomes to real numbers

X X : Ω → ℝ
Ω

Random process Outcomes  Numbers→

X = {1 if heads
0 if tails

Flipping a coin

 Y = Sum of the upward faces 
after rolling 8 dices

Rolling 8 dices

Pr[X = 1] = Pr[w ∈ Ω |X(w) = 1] Pr[Y ≤ 6] = Pr[w ∈ Ω |X(w) ≤ 6]

https://en.wikipedia.org/wiki/Measurable_function
https://en.wikipedia.org/wiki/Outcome_(probability)


Functions
Probability Theory

• probability density function  

•  

• cumulative distribution function  

•

fx(x)

fX : ℝ → [0,1], x ↦ Pr[X = x] ( = Pr[X(ω) = x])

Fx(x)

FX : ℝ → [0,1], x ↦ Pr[X ≤ x]



Expected Value
Probability Theory

• expected value  

•   

•   

•

𝔼[X]
𝔼[X] := ∑

x∈Wx

x ⋅ Pr[X = x]

𝔼[X] = ∑
w∈Ω

X(w) ⋅ Pr[w]

𝔼[X] =
∞

∑
i=1

Pr[X ≥ i]

weighted average 



Expected Value Properties
Probability Theory • expected value 

•  𝔼[X] = ∑
w∈Ω

X(w) ⋅ Pr[w]

weighted average 

• linearity:  

•  

•  

•  

• monotonicity : 

• If  then 

E[X + Y] = E[X] + E[Y]

E[aX] = aE[x]

E[a1X1 + a2X2 + . . . + anXN + b] = a1E[X1] + . . . + anE[Xn] + b

X ≤ Y E[X] ≤ E[Y]



Variance
Probability Theory

• variance Var[X] measure of how far a set of 
numbers is spread out from 

their average value/mean
Var[X] := 𝔼[(X − E[x])2] = ∑

x∈WX

(x − E[x])2 ⋅ Pr[X = x]

• standard deviation σ

σ := Var[X]

Var[X] = 𝔼[X2] − 𝔼[X]2

Var[a ⋅ X + b] = a2 ⋅ Var[X]



Formelsammlung
Probability Theory



Probability Theory
Distributions



Indicator Variable
Probability Theory

• indicator variable :  

• For an event   

  

•  

IA

A ⊆ Ω

p = Pr[A] = E[IA]

IA(ω) := {1, ω ∈ A
0, ω ∉ A

fIA
(x) =

p, x = 1,
1 − p, x = 0,
0, otherwise



Bernoulli Distribution
Probability Theory

X ∼ Bernoulli(p)

fX(x) =
p, x = 1,
1 − p, x = 0,
0, otherwise

E[X] = p Var[X] = p (1 − p)

yes-no question 

Example to remember : 

Coin toss

X = indicator for head



Binomial Distribution
Probability Theory

X ∼ Bin(n, p)

fX(x) = (n
x) px(1 − p)n−x, x ∈ {0,1,…, n}

0, otherwise

E[X] = np Var[X] = np (1 − p)

# sucesses in a sequence 
of n yes-no questions

Example to remember : 

Coin toss 10 times

X = #heads

✅
✅✅✅



Poisson-Distribution
Probability Theory

X ∼ Po(λ)

fX(i) = {
e−λλi

i! , für i ∈ ℕ0

0, otherwise

E[X] = λ Var[X] = λ

 converges to   Bin(n, λ/n) Po(λ)

for n → ∞



Geometric Distribution
Probability Theory

X ∼ Geo(p)

fX(i) = {p(1 − p)i−1, für i ∈ ℕ,
0, otherwise

#yes-no questions 
needed to get one yes

Example to remember : 
Coin toss until a head comes

X = #tosses

✅

❌
❌
❌
❌

FX(n) = 1 − (1 − p)n

E[X] = 1/p Var[X] =
1 − p

p2



Geometric Distribution
Probability Theory

X ∼ Geo(p)

fX(i) = {p(1 − p)i−1, für i ∈ ℕ,
0, otherwise

E[X] = 1/p Var[X] =
1 − p

p2

✅

❌
❌
❌
❌

Robin has no brain

Memorylessness

Pr[X ≥ s + t ∣ X > s] = Pr[X ≥ t]
Pr[X = s + t ∣ X > s] = Pr[X = t]FX(n) = 1 − (1 − p)n



Negative Binomial Distribution
Probability Theory

X ∼ NegativeBinomial(n)

fX(k) = (k − 1
n − 1)(1 − p)k−npn, for k = 1,2,…

0, otherwise

#yes-no questions 
needed to get n yesses

Example to remember : 
Coin toss until n-th head comes

X = #tosses

✅

❌
❌
❌

E[X] = n/p

✅



Coupon Collector
Probability Theory

Xi ∼ Geo ( n − (i − 1)
n )

collect all coupons and 
win 

Example to remember : 

n different coupons , we’re 
getting one in each turn

X = #turns until we get all n 
coupons𝔼[X] =

n

∑
i=1

𝔼[Xi] =
n

∑
i=1

n
n − i + 1

= n ⋅
n

∑
i=1

1
i

= n ⋅ Hn,

 #turns in phase i Xi :=

phase i := turns while we have i-1 different coupons

X =
n

∑
i=1

Xi

E[Xi] = 1/p

Hn = ln n + 𝒪(1)



Formelsammlung
Probability Theory



Examples



A&W

Nil Ozer

Exercise Session 8
Probability III



A&W Overview



Outline
• Minitest 4 

• Probability Theory III 

• independence of random variables 

• wald’s identity 

• inequalities 

• A Game of Skill - Probability CodeExpert



Minitest 4



Probability Theory



Independence of random variables
Probability Theory

• independent (random variables) 

•  are independent if for all  the events 

 are independent. 

X1 , . . . , Xn x1 ∈ XX1
, , , xn ∈ WXn

X1 = x1, X2 = x2 , . . . , Xn = xn

Pr[X1 = x1, …, Xn = xn]

=fX1,…,Xn(x1,x2,…,xn)

= Pr[X1 = x1]

=fX1
(x1)

⋯Pr[Xn = xn]

=fXn(xn)



Independence of random variables
Probability Theory

•  are independent random variables,  arbitrary :   

•

X1 , . . . , Xn S1 , . . . , Sn ⊆ ℝ

Pr[X1 ∈ S1, …, Xn ∈ Sn] = Pr[X1 ∈ S1]⋯ Pr[Xn ∈ Sn] .

•  are independent random variables ,  are real-valued 

functions (  for  ) :  

•  are independent random variables

X1 , . . . , Xn f1 , . . . , fn
fi : ℝ → ℝ i = 1 , . . . , n

f1(X1), …, fn(Xn)



Independence of random variables
Probability Theory

•  and  are two independent random variables,  X Y Z := X + Y

Poisson(λ1) + Poisson(λ2) = Poisson(λ1 + λ2)

fZ(z) = ∑
x∈WX

fX(x) ⋅ fY(z − x) .

Bin(n, p) + Bin(m, p) = Bin(n + m, p)



Wald’s Identity 
Probability Theory

•  and  are two independent random variables,  N X WN ⊆ ℕ

Z :=
N

∑
i=1

Xi

𝔼[Z] = 𝔼[N] ⋅ 𝔼[X]

where  are independent copies of X1 , X2 . . . X



Example



Inequalities
Probability Theory

get used to using it !



Let’s take a break



A Game of Skill
CodeExpert



Questions

Nil Ozer

Feedbacks , Recommendations
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Last Weeks … 
• 08.05 : Randomized Algorithms II  

• 15.05 : Flow  

• 22.05 online : Minimum Cut , Convex Hull I  (shortly remaining primality tests ) 

• 27.05/28.05 extra session : Convex Hull II , Smallest Enclosing Cycle 

• 29.05 last session : Exam Prep Session + Pizza and Drinks



Outline

• Randomized Algorithms II 

• Randomized Algorithms I recap  

• Primality Tests 

• Colorful Paths



Randomized Algorithms
Recap



Classic vs. Randomized
Randomized Algorithms

Input Algorithm Output

RNG  R

random bits, random numbers

classic randomized

•  is correct and definite 
for all 

A(I)
I

I A A(I)
Input Algorithm Output

I A A(I, R)

• The runtime is O(f(n)) for all  
with n

I
| I | =

•  is correct with 
… for all 

A(I, R)
PrR[A(I, R) is correct] ≥ I

• The runtime is O(f(n)) and/or

Runtime  O(f(n)) ]  … for all  with nPrR[ ≤ ≥ I | I | =

 can’t be reproduced

A(I, R)



Las-Vegas vs. Monte-Carlo
Randomized Algorithms

Las-Vegas Monte-Carlo

• can output true answer
• cannot output false answer
• can run forever/ can output no 

answer (???)

• can output true answer
• can output false answer
• always outputs an answer



Problem Description
Target-Shooting

given : 

to find : 

finite sets  and  with S U S ⊆ U

   ≈
|S |
|U |

We can generate elements  in  
uniformly distributed

u U

 is very large. We cannot 
afford to iterate through 
U

U

 IS : U → {0,1}
 IS(u) = 1 ⟺ u ∈ S



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)
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Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N
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N
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IS(ui)



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)

1
10

⋅
10

∑
i=1

IS(ui) =
3
10

|S |
|U |

≈
20
64

= 0.3125



Algorithm
Target-Shooting

 IS(u) = 1 ⟺ u ∈ S

1 : Pick  from  randomly, uniformly  and independentlyu1, . . . , uN U

2 : Return 
1
N

⋅
N

∑
i=1

IS(ui)



Problem Description
Finding Duplicates

given : 

to find : 

A dataset  , is a sequence of  elementsD = (s1, s2, . . . , sn) n

find all duplicates in D  with  is a duplicate in  if (i, j) 1 ≤ i < j ≤ n D
si = sj



Problem Description
Finding Duplicates

given : 

to find : 

A dataset  , is a sequence of  elementsD = (s1, s2, . . . , sn) n

find all duplicates in D  with  is a duplicate in  if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in  are very large. 

Storing and comparing is 
expensive

D

Hashfunction h : 

h : U → [m]

h is efficiently computable
h behaves like a random variable

[m] = {1,2,...,m}

∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =
1
m

(independent for different u)



Problem Description
Finding Duplicates

given : 

to find : 

A dataset  , is a sequence of  elementsD = (s1, s2, . . . , sn) n

find all duplicates in D  with  is a duplicate in  if (i, j) 1 ≤ i < j ≤ n D si = sj

Elements in  are very large. 

Storing and comparing is 
expensive

D

Hashfunction h : 
h : U → [m] [m] = {1,2,...,m} ∀u ∈ U ∀i ∈ [m] : Pr[h(u) = i] =

1
m

Each  is uniformly randomly distributed in  BUTh(si) [m]

si = sj ⟹ h(si) = h(sj)

Our  is much smaller than  ( compression )m |U |



Algorithm
Finding Duplicates

hashing:

sorting:
duplicates:



Challenge : Collisions
Finding Duplicates

hashing:

sorting:
duplicates:

collision : h(B) = h(Z)



Challenge : Collisions
Finding Duplicates

Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)



Challenge : Collisions
Finding Duplicates
Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] = ∑
1≤i<j≤n

𝔼[Ki,j] ≤ (n
2) ⋅

1
m



Challenge : Collisions
Finding Duplicates
Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)
 : 𝔼[#Collisions]

 bernoulli RV. with : Ki,j Ki,j = 1 ⟺ (i, j) is a collision

Pr[Ki,j = 1] = {
1
m if si ≠ sj

0 otherwise
𝔼[Ki,j] ≤

1
m

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2



Runtime
Finding Duplicates
Collision : 

The new, undesired duplicates in the hashmap

the pairs  with  and (i, j) , 1 ≤ i < j ≤ n, si ≠ sj h(si) = h(sj)

𝔼[#Collisions] ≤ (n
2) ⋅

1
m

< 1 for m = n2

Runtime :
• n hash computations
• sorting in O(n log n)

• duplicate check comparisons (|Dupl(D)|+#Kollisionen)  O(n)≈

O(n log n)

indices

+ O(n log m)

hash values

m=n2
= O(n log n)

additional memory

Overall : O(n log n)



Randomized Algorithms
Primality Tests



Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime ? ?n



Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime     has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function  :  π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x



Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime     has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function  :  π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

π(11) =



Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime     has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function  :  π(x)

π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x

π(11) = 5



Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime     has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function  :  π(x) π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x



Naive Algorithm
Primality Test

1 ) For all  test if  divides a ≤ n a n



Easy randomized test
Primality Test

1 ) Choose  uniformly at randoma ∈ {1,2, . . . , n}
2 ) if  divides  then return ‘not prime’  

3 ) else return ‘prime’ 

a n



DiskMat 🤢
Refresher

gcd : greatest common divisor

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1]

 : the multiplicative group modulo n ℤ*n
ℤ*n = {a ∈ {1,2,…, n − 1} ∣ gcd(a, n) = 1}



Euclidean Primality Test
Primality Test

1 ) Choose  uniformly at randoma ∈ {1,2, . . . , n}
2 ) if   then return ‘not prime’  

3 ) else return ‘prime’ 

gcd(a, n) > 1

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1] gcd := greatest common divisor

can be calculated in O((log nm)3 ) 

• if n is a prime : always correct

{a ∈ [1,n − 1] : gcd(a, n) = 1}
n − 1

=
|ℤ*n |
n − 1

• if n is not a prime : it might return a wrong answer with the probability 



Let’s take a break



Randomized Algorithms
Colorful Paths



Mathematical Tools and Notations
Helper

 [n] := {1,2 , . . . , n}

  the set of sequences over  of length [n]k := [n] k | [n]k | = nk

  the set of -element subsets of  ([n]
k ) := k [n] ([n]

k ) = (n
k) .

The  nodes on a path of length  can be colored using  in exactly  waysk k − 1 [k] kk

 of these colorings use each color exactly once k!



Mathematical Tools and Notations
Helper

Handshaking lemma : For all graphs , it holds that ∑
v∈V

deg(v) = 2 |E | .

If you repeat an experiment with success probability  until success, then the 

expected number of trials is         ( ) 

p
1
p

Geo(p)



Mathematical Tools and Notations
Helper

For  , it holds that  c, n ∈ ℝ+ clog n = nlog c

  and  is always polynomial in 2log n = nlog 2 = n 2𝒪(log n) = n𝒪(1) n

For  , it holds that  n ∈ ℕ0

n

∑
i=0

(n
i ) = 2n

For  , it holds that  n ∈ ℕ0
n!
nn

≥ e−n (power series expansion of the exponential function)

(binomial theorem) 



Problem Description
Long-Path 

given : 

to find : 

A graph  and a number   G B ∈ ℕ0

is there a path of length  in  B G



Problem Description

given : 

to find : 

A graph  and a number   G B ∈ ℕ0

is there a path of length  in  B G

NP-Complete

Detour ! 

Long-Path 



Problem Description

given : 

to find : 

A graph G = (V, E)

Does there exist a colorful path of length  in a randomly colored 
graph ? 

k − 1

Colorful Paths

A coloring of its vertices with  colors k γ : V → [k]

colorful : 

A path is colorful if all of the vertices in the path have a different color



Problem Description

given : 

to find : 

A graph G = (V, E)

Does there exist a colorful path of length  in a randomly colored 
graph ? 

k − 1

Colorful Paths

A coloring of its vertices with  colors k γ : V → [k]

A path is colorful if all of the vertices in the path have a different color

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

∃ colorful path of length k − 1 ⟺ ⋃
v∈V

Pk−1(v) ≠ ∅



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}
color sets S s.t |S| = i+1 and there is a 

colorful path of length i ending at v only 
using the colors in S



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) =
color sets S s.t |S| = i+1 and there is a 

colorful path of length i ending at v only 
using the colors in S



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}
color sets S s.t |S| = i+1 and there is a 

colorful path of length i ending at v only 
using the colors in S



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}
color sets S s.t |S| = i+1 and there is a 

colorful path of length i ending at v only 
using the colors in S

• P1(v) =



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)} ∣ x ∈ N(v) und γ(x) ≠ γ(v)}

color sets S s.t |S| = i+1 and there is a 
colorful path of length i ending at v only 

using the colors in S



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)} ∣ x ∈ N(v) und γ(x) ≠ γ(v)}

color sets S s.t |S| = i+1 and there is a 
colorful path of length i ending at v only 

using the colors in S

• Pi(v) =



Pi(v)
Colorful Paths

Pi(v) := {S ⊆ [k], |S | = i + 1 ∣ There exists a colorful path of length i ending in v with colors S}

• P0(v) = {{γ(v)}}

• P1(v) = {{γ(x), γ(v)} ∣ x ∈ N(v) und γ(x) ≠ γ(v)}

color sets S s.t |S| = i+1 and there is a 
colorful path of length i ending at v only 

using the colors in S

•
 Pi(v) = ⋃

x∈N(v)
{R ∪ {γ(v)} ∣ R ∈ Pi−1(x) und γ(v) ∉ R}



Algorithm
Colorful Paths



Algorithm
Colorful Paths

1

2

3

4

5

6

7P0

P0 (1)

P0 (2)

P0 (3)

P0 (4)

P0 (5)

P0 (6)

P0 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P0

P0 (1) {{1}}

P0 (2) {{1}}

P0 (3) {{1}}

P0 (4) {{2}}

P0 (5) {{3}

P0 (6) {{3}}

P0 (7) {{4}}

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1)

P1 (2)

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1
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3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2)

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2)

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3)

P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4)

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5)

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6)

P1 (7)

γ 1 , 2 , 3 , 4 



Algorithm
Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6) ∅
P1 (7)

γ 1 , 2 , 3 , 4 
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Colorful Paths

1

2

3

4

5

6

7P1

P1 (1) {{1 , 2}}

P1 (2) {{1 , 2}}

P1 (3) ∅
P1 (4) {{1 , 2} , {2 , 3}}

P1 (5) {{2 , 3} , {3 , 4}}

P1 (6) ∅
P1 (7) {{3 , 4}}}

γ 1 , 2 , 3 , 4 
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Colorful Paths
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2

3

4

5

6

7P2

P2 (1)

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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2

3

4

5

6

7P2

P2 (1)

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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Colorful Paths
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3

4
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6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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Colorful Paths
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6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2)

P2 (3)

P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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P2 (7)

γ 1 , 2 , 3 , 4 
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P2 (2) {{1 , 2 , 3}}

P2 (3)
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P2 (7)

γ 1 , 2 , 3 , 4 
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2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4)

P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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6
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P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
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P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
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P2 (7)

γ 1 , 2 , 3 , 4 
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5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}
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P2 (5)

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}

P2 (2) {{1 , 2 , 3}}

P2 (3) ∅
P2 (4) {{2 , 3 , 4}}

P2 (5) {{1 , 2 , 3}}

P2 (6)

P2 (7)

γ 1 , 2 , 3 , 4 
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Colorful Paths

1

2

3

4

5

6

7P2

P2 (1) {{1 , 2 , 3}}
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P3 (1) {{1 , 2 , 3 , 4}}
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P3 (6)

P3 (7)
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P3 (1) {{1 , 2 , 3 , 4}}
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P3 (7)
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P3 (6) ∅
P3 (7) {{1 , 2 , 3 , 4}} returns true ! 



Algorithm
Colorful Paths

1

2

3

4

5

6

7

γ 1 , 2 , 3 , 4 

P3

P3 (1) {{1 , 2 , 3 , 4}}
P3 (2) {{1 , 2 , 3 , 4}}
P3 (3) ∅
P3 (4) ∅
P3 (5) ∅
P3 (6) ∅
P3 (7) {{1 , 2 , 3 , 4}} returns true ! 



Algorithm + Probability 
Colorful Paths

Satz 3.2

Satz 3.3



Mathematical Tools and Notations
Helper

 [n] := {1,2 , . . . , n}

  the set of sequences over  of length [n]k := [n] k | [n]k | = nk

  the set of -element subsets of  ([n]
k ) := k [n] ([n]

k ) = (n
k) .

The  nodes on a path of length  can be colored using  in exactly  waysk k − 1 [k] kk

 of these colorings use each color exactly once k!



Mathematical Tools and Notations
Helper

Handshaking lemma : For all graphs , it holds that ∑
v∈V

deg(v) = 2 |E | .

If you repeat an experiment with success probability  until success, then the 

expected number of trials is         ( ) 

p
1
p

Geo(p)



Mathematical Tools and Notations
Helper

For  , it holds that  c, n ∈ ℝ+ clog n = nlog c

  and  is always polynomial in 2log n = nlog 2 = n 2𝒪(log n) = n𝒪(1) n

For  , it holds that  n ∈ ℕ0

n

∑
i=0

(n
i ) = 2n

For  , it holds that  n ∈ ℕ0
n!
nn

≥ e−n (power series expansion of the exponential function)

(binomial theorem) 
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Flow



A&W Overview



Last Weeks … 
• 08.05 : Randomized Algorithms II  

• 15.05 : Flow  

• 22.05 online : Minimum Cut , Convex Hull I  (shortly remaining primality tests ) 

• 28.05 extra session : Convex Hull II , Smallest Enclosing Cycle 

• 30.05 last extra session : Exam Prep Session + Pizza and Drinks



Outline

• Minitest 5 

• Flow



Minitest 5



Flow



Definitions
Flow

• Network  : 

•          

•  is a directed graph (without loops) 

•   is the source 

•   is the sink 

•    is the capacity function

N

N = ( V, A , c , s , t)

(V, A)

s ∈ V

t ∈ V ∖ s

c : A → ℝ+
0



ts

Definitions
Flow

• Network  : 

•          

•  is a directed graph (without loops) 

•   is the source 

•   is the sink 

•    is the capacity function

N

N = ( V, A , c , s , t)

(V, A)

s ∈ V

t ∈ V ∖ s

c : A → ℝ+
0

s b

a

c

t

5

1 7

2 2

16
6



Definitions
Flow

• Flow  in  :       f N f : A → ℝ

∑
u∈V:(u,v)∈A

f(u, v) = ∑
u∈V:(v,u)∈A

f(v, u) for all v ∈ V∖{s, t}

val( f ) := netoutflow(s) := ∑
u∈V:(s,u)∈A

f(s, u) − ∑
u∈V:(u,s)∈A

f(u, s)

0 ≤ f(e) ≤ c(e) for all e ∈ ACapacity constraint : 

Flow conservation : 

The value of a flow : 

val( f ) = netinflow(t) := ∑
u∈V:(u,t)∈A

f(u, t) − ∑
u∈V:(t,u)∈A

f(t, u)
what flows out of the 

source, must flow into the 
sink



Definitions
Flow

• Flow  in  :       f N f : A → ℝ

∑
u∈V:(u,v)∈A

f(u, v) = ∑
u∈V:(v,u)∈A

f(v, u) for all v ∈ V∖{s, t}

val( f ) := netoutflow(s) := ∑
u∈V:(s,u)∈A

f(s, u) − ∑
u∈V:(u,s)∈A

f(u, s)

0 ≤ f(e) ≤ c(e) for all e ∈ ACapacity constraint : 

Flow conservation : 

The value of a flow : 

val( f ) = netinflow(t) := ∑
u∈V:(u,t)∈A

f(u, t) − ∑
u∈V:(t,u)∈A

f(t, u)
what flows out of the 

source, must flow into the 
sink



Definitions
Flow

Is this a correct flow function ? 

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

6

1 7

2 1

15
6



Definitions
Flow

Is this a correct flow function ? 

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

6

1 7

2 1

15
6

No ! 

Harms the capacity 
constraint

0 ≤ f(e) ≤ c(e) for all e ∈ A



Definitions
Flow

Is this a correct flow function ? 

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3
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2 2
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6



Definitions
Flow

Is this a correct flow function ? 

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 2

15
6

No ! 

Harms the flow 
conservation

∑
u∈V:(u,v)∈A

f(u, v) = ∑
u∈V:(v,u)∈A

f(v, u) for all v ∈ V∖{s, t}

the total inflow equals 
total outflow



Definitions
Flow

Is this a correct flow function ? 

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 1

15
6



Definitions
Flow

Is this a correct flow function ? 

tss b

a

c

t

5

1 7

2 2

16
6

tss b

a

c

t

3

1 7

2 1

15
6

Yes ! 

What is  ? val( f )
3 + 5 - 1 = 7 

what flows out of the 
source, must flow into the 

sink

7 + 1 - 1 = 7 



• s-t-cut  for a network   (S, T) (V, A, c, s, t)

• capacity of an s-t-cut  (S, T)

Definitions
Flow

• is a partition of   V

•  with  and (S, T) s ∈ S t ∈ T

cap(S, T) := ∑
(u,w)∈(S×T)∩A

c(u, w)

Partition (S, T) : S ∪ T = V und S ∩ T = ∅



• capacity of an s-t-cut  (S, T)

Definitions
Flow

cap(S, T) := ∑
(u,w)∈(S×T)∩A

c(u, w)

tss b

a

c

t

5

1 7

2 2

16
6

cap(S, T) = ?



• capacity of an s-t-cut  (S, T)

Definitions
Flow

cap(S, T) := ∑
(u,w)∈(S×T)∩A

c(u, w)

tss b

a

c

t

5

1 7

2 2

16
6

cap(S, T) = 6 + 2 + 2 = 10



• Let  be a flow and  an s-t-cut in a network  :   f (S, T) (V, A, c, s, t)

Lemmas
Flow

val( f ) ≤ cap(S, T)
A flow can never exceed the capacity of an s-t-cut

If we can find an s-t-cut s.t.  
then  is a maximum flow.

val( f ) = cap(S, T)
f

• Maxflow-Mincut Theorem :  

Every network satisfies 

max
f

val( f ) = min
(S,T) s-t-cut

cap(S, T)



Problem Description

given : 

to find : 

A network N = (V, A, c, s, t)

A flow of maximum value

Flow



Local changes to the flow that preserve flow conservation
Flow

When increasing : watch out for the capacity 

When decreasing : watch out for the previous flow 
the total inflow equals 

total outflowundirected augmenting path :  



Local changes to the flow that preserve flow conservation
Flow

10

6

4

6

6

0

6

0



Local changes to the flow that preserve flow conservation
Flow

  c

f

c − f

f



Residual Network
Flow

• Residual Network  : 

• Let         be a network ,    flow for  

•         

•  ,     : put  in   ,    -  

•  ,    0 : put  in   ,  

Nf

N = ( V, A , c , s , t) f N

Nf = ( V, Af , rf , s , t)

e ∈ A f(e) < c(e) e Af rf(e) := c(e) f(e)

e ∈ A f(e) > eopp Af rf(eopp) := f(e)

  “residual capacity”rf



Residual Network examples
Flow

in Network in Residual Network

10

6

4

6



Residual Network examples
Flow

in Network in Residual Network

10

10

10



Residual Network examples
Flow

in Network in Residual Network

10

0

10



• Let  be a flow and  an s-t-cut in a network  :   f (S, T) (V, A, c, s, t)

Remember
Flow

val( f ) ≤ cap(S, T)
A flow can never exceed the capacity of an s-t-cut

If we can find an s-t-cut s.t.  
then  is a maximum flow.

val( f ) = cap(S, T)
f

• Maxflow-Mincut Theorem :  

Every network satisfies 

max
f

val( f ) = min
(S,T) s-t-cut

cap(S, T)



Theorem
Flow

Let N be a network without reverse edges

A flow  is a maximum flow f

There exists no directed s-t-path in the residual network Nf

⟺



Ford-Fulkerson Algorithm
Flow

1 :  

2 : while  s-t-path  in  do  

3 :        Augment the flow along  

4 : return 

f ← 0

∃ P Nf

P

f

Augmenting along  : P
Take a look at all the residual capacities on this path 

Take the minimum rf,min

Increase the flow on this path with the minimum  rf,min

No termination guarantees in ℝ
There exists an integer maximum flow and 
it can be computed in O(mnU)  
U is the maximum capacity

integer capacities , no reverse edges : 

https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/



Ford-Fulkerson Algorithm
Flow

https://www.geeksforgeeks.org/ford-fulkerson-algorithm-for-maximum-flow-problem/

1 ) Start with initial flow as 0 

2 ) While there exists an augmenting path from the source to the sink:   

Find an augmenting path using any path-finding algorithm, such as 
breadth-first search or depth-first search. 

Determine the amount of flow that can be sent along the augmenting 
path, which is the minimum residual capacity along the edges of the 
path. 

Increase the flow along the augmenting path by the determined 
amount. 

3 ) Return the maximum flow.



Let’s take a break



Example question
Flow



Applications
Flow

Maximum Bipartite Matching Problem 

given : 

to find : 

A bipartite graph G (unweighted, undirected)

Find a cardinality-maximum Matching



Matching
Recap

no two edges share common vertices

a b

c d e

f

• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

Is this a matching ? 



Matching

no two edges share common vertices

a b

c d e

f

• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

Is this a matching ? 

✅ 
1 = {{a,c} , {e,f}}M

Recap



Matching

no two edges share common vertices

a b

c d e

f

• Matching : 

• A subset of edges  in a Graph  is called a Matching, 
if no vertex in the graph is incident to more than one edge from 

M ⊆ E G = (V, E)
M

Is this a matching ? 

❌ 

Recap



Matching

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′ 

M ⊆ M′ |M′ | > |M |

“no edge can be added to this matching”

• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”

Recap



• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′ |M′ | > |M |

Matching

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′ 

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ? 

✅  ✅ 

“no edge can be added to this matching”

“one can’t find a bigger matching”

Recap



Matching

• inclusion-maximal : 

• A matching  is inclusion-maximal , if there is no other matching   
s.t.   (strict inclusion) and 

M ⊆ E M′ 

M ⊆ M′ |M′ | > |M |

a b

c d e

f
Is this inclusion-maximal ? Is this maximum ? 

✅ ❌ 

“no edge can be added to this matching”

• (cardinality-) maximum  : 

• A matching  is (cardinality-) maximum , if there is no other 
matching   s.t. 

M ⊆ E
M′ |M′ | > |M |

“one can’t find a bigger matching”

Recap



Applications
Flow

Maximum Bipartite Matching Problem 

Graph to Newtork : Build a Network NG

G = (U ⊎ W, E)

bipartite G

↦ NG = U ⊎ W ⊎ {s, t}

Vertex Set

, A, c, s, t

Network
add  and  , additional vertices s.t. s t s ≠ t

c ≡ 1

A = ({s} × U) ∪ {(u, w) ∈ U × W ∣ {u, w} ∈ E} ∪ (W × {t})



Applications
Flow

Maximum Bipartite Matching Problem 

given : 

to find : 

A bipartite graph   (unweighted, undirected)G = (U ∪ W, E)
Find a cardinality-maximum Matching

Algorithm : 

Build a Network NG
G = (U ⊎ W, E)

bipartite G

↦ NG = U ⊎ W ⊎ {s, t}

Vertex Set

, A, c, s, t

Networkadd  and  , additional vertices s.t. s t s ≠ t

c ≡ 1A = ({s} × U) ∪ {(u, w) ∈ U × W ∣ {u, w} ∈ E} ∪ (W × {t})

max
M Matching in G

|M | = max
f Flow in NG

val( f )



Applications
Flow

Edge-disjoint paths problem

given : 

to find : 

A graph G with two vertices  s.t. u, v u ≠ v .

Maximum number of edge-disjoint  paths u − v



Applications
Flow

Edge-disjoint paths problem

G = (V, E), u, v ∈ V

Graph with 2 vertices

⇒ N*G = (V, A, c, u, v)

Network 

A := {(x, y), (y, x) ∣ {x, y} ∈ E}

c ≡ 1

Graph to Newtork : 



Applications
Flow

Edge-disjoint paths problem

G = (V, E), u, v ∈ V

Graph with 2 vertices

⇒ N*G = (V, A, c, u, v)

Network 

A := {(x, y), (y, x) ∣ {x, y} ∈ E}

c ≡ 1

Graph to Newtork : 



Applications
Flow

Edge-disjoint paths problem

given : 

to find : 

A graph G with two vertices  s.t. u, v u ≠ v .

Maximum number of edge-disjoint  paths u − v

Algorithm : 

Build a Network NG
G = (V, E), u, v ∈ V

Graph with 2 vertices

⇒ N*G = (V, A, c, u, v)

Network 

A := {(x, y), (y, x) ∣ {x, y} ∈ E} c ≡ 1
 # edge disjoint u-v paths  = max

f Flow in NG

val( f )



Applications
Flow

Edge-disjoint paths problem



Applications
Flow

Image Segmentation

given : 

to find : 

An image modeled as a graph  G = (P, E)

seperate foreground from background

color information  χ : P → colors 

color information  χ : P → colors 

per-pixel estimates α : P → ℝ+
0 β : P → ℝ+

0 γ : E → ℝ+
0

 is bigger  more likely foregroundαp ⟹
 is bigger  more likely backgroundβp ⟹
 is bigger  more likely belong to the same regionγe ⟹



Applications
Flow

Image Segmentation

color information  χ : P → colors 

per-pixel estimates

q(A, B) := ∑
p∈A

αp + ∑
p∈B

βp − ∑
e ∈ E,

|e ∩ A | = 1

γe

α : P → ℝ+
0 β : P → ℝ+

0 γ : E → ℝ+
0

 is bigger  more likely foregroundαp ⟹
 is bigger  more likely backgroundβp ⟹
 is bigger  more likely belong to the same regionγe ⟹

Quality function : 

q′ (A, B) := ∑
p∈A

βp + ∑
p∈B

αp + ∑
e ∈ E

|e ∩ A | = 1

γe

maximize

minimize



Applications
Flow

Build a Network NG

NG := (P ∪ {s, t}, ⃗E , c, s, t)
add  and  , additional vertices s.t. s t s ≠ t

Image Segmentation

 has a directed edge to each pixel  with capacity s p ∈ P αp

each pixel   has a directed edge to  with capacity p ∈ P t βp

for each edge  there are two directed edges  and 
 with capactiy 

e = {p, p′ } ∈ E (p, p′ )
(p′ , p) γe

max
M Matching in G

|M | = max
f Flow in NG

val( f )



Applications
Flow

Image Segmentation

max
M Matching in G

|M | = max
f Flow in NG

val( f )



Applications
Flow

Image Segmentation

given : 

to find : 

An image modeled as a graph  G = (P, E)

seperate foreground from background

color information  
χ : P → colors 

q′ (A, B) = max
f Flow in NG

val( f )

Algorithm : 
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Minimum Cut, Smallest Enclosing Cycle



A&W Overview



Last Weeks … 
• 08.05 : Randomized Algorithms II  

• 15.05 : Flow  

• 23.05 online : Minimum Cut , Smallest Enclosing Circle 

• 28.05 extra session : Exam Prep Session + Pizza and Drinks 

• 30.05 last extra session : Convex Hull  (shortly remaining primality tests) 



Outline

• Minimum Cut 

• Smallest Enclosing Circle



Minimum Cut



Definitions
Min-Cut 

• Multigraph  : 

• undirected, unweighted, without self-loops 

• possibly with multiple edges between the same pair of nodes
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Definitions
Min-Cut 

• Multigraph  : 

• undirected, unweighted, without self-loops 

• possibly with multiple edges between the same pair of nodes 

• Edge Cut  : 

• A set of edges  s.t.  is a disconnected graph.  

•  :  

• the cardinality of the smallest possible edge cut in graph G. 

C

C G′ = (V, E∖C)

μ(G)

μ(G) := min
C ⊆ E,

(V, E∖C) disconnected

|C |



Problem Description

given : 

to find : 

A multigraph G

μ(G)

Min-Cut 
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Min-Cut 

Examples : 



First Known Solution
Min-Cut minimum s-t cut in O(mn logn)  

• Fix a source node  

• Then consider , for each  compute the minimum s-t cut 

• The global min-cut is the smallest of these s-t cuts 

s

t ∈ V∖{s} t

total runtime : O((n-1)mn logn) = O(n4 logn)



Edge Contraction of e
Min-Cut 

e = {u, v} ∈ E

e

u v G



Edge Contraction of e
Min-Cut 

e = {u, v} ∈ E

e

u v G
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Edge Contraction of e
Min-Cut 

e = {u, v} ∈ E
xu,v  / G e

{w, w′ } ↦ {w, w′ }, {w, u} ↦ {w, xu,v}, {w, v} ↦ {w, xu,v}
For  : w, w′ ∈ V(G)∖{u, v}



Lemma
Min-Cut 

Let  be a multigraph, G = (V, E) e ∈ E

μ(G∖e) ≥ μ(G)

If  has a minimum cut  s.t.  G C e ∉ C

μ(G∖e) = μ(G)

The minimum cut value  can never decrease when contracting an edgeμ
 stays unchanged if there exists a minimum cut that doesn’t contain the 

edge being contracted
μ

Find  whose 
contraction preserves 

e
μ



Cut(G)
Min-Cut 

1 :   

2 : while  do  

3 :        uniformly random edge in  

4 :          

5 : return size of the unique cut in 

G′ ← G

|V(G′ ) | > 2

e ← G′ 

G′ ← G′ ∖e

G′ 

Runtime : O(n2)
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Cut(G)
Min-Cut 

1 :   

2 : while  do  

3 :        uniformly random edge in  

4 :          

5 : return size of the unique cut in 

G′ ← G

|V(G′ ) | > 2

e ← G′ 

G′ ← G′ ∖e

G′ 5 ! 



Cut(G)
Min-Cut 

Pr[μ(G) = μ(G/e)] ≥ 1 −
2
n

For an edge e : 

For all G with  ,  : |V | = n n ≥ 3

̂p(G) := Probability that Cut(G) returns the value μ(G)

̂p(n) := inf
G = (V, E),

|V | = n

̂p(G) ̂p(n) ≥ (1 −
2
n ) ⋅ ̂p(n − 1) ̂p(n) ≥

2
n(n − 1)

=
1

(n
2)



Cut(G)
Min-Cut 

We repeat the algorithm Cut(G)  times for some   and return the smallest 

value obtained.

λ (n
2) λ > 0

Runtime : O( ) λn4

Success 
Probability :  

The smallest encountered value equals  with probability at 
least 

μ(G)
1 − e−λ

 , runtime is O(  ) with failure probability  λ := lnn n4logn ≤ 1/n
we already had a deterministic solution with this runtime !



Cut(G) + Strategy Switch in the Critical Region 
Min-Cut Idea : Last steps are critical 

Stop contracting when there are t vertices remaining

switch to a randomized O( ) algorithm with success probability t4 ≥ 1 − e−1

Runtime : 

Success Probability : 

O(λ(
n4

t2
+ n2t2)

t= n
= O(λn3)

≥ 1 − e−1

Bootstrapping : We can use the same method to improve further. In 
“Limit” we have a O( polylog( )) algorithm. n2 n



Let’s take a break



Smallest Enclosing Circle



Problem Description

given : 

to find : 

A finite set of points P ⊆ ℝ2

The circle with the smallest radius that encloses all points in P

Smallest Enclosing Circle

C encloses P : 

 the closed disk bounded by C C′ :=

C encloses P if P ⊆ C′ 



Lemmas
Smallest Enclosing Circle

For every finite set of points    there exists a unique smallest 
enclosing cycle 

P ⊆ ℝ2

C(P)

For every finite set of points    with  there exists a subset 
 with  s.t. 

P ⊆ ℝ2 |P | ≥ 3
Q ⊆ P |Q | = 3 C(Q) = C(P)

 acts as a certificate for Q C(P)



Easy Algorithm
Smallest Enclosing Circle



Algorithm 
Smallest Enclosing Circle

1 :   

2 : repeat 

3 :        randomly and uniformly choose a subset with  

4 :        compute   

5 :        if   then return   

6 :        else  double all points in  that lie outside of  

7 : forever

P′ ← P

Q ⊆ P′ |Q | = 11

C(Q)

P ⊆ C′ (Q) C(Q)

P′ C(Q)

Runtime : O( n log n) 
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Algorithm 
Smallest Enclosing Circle



Sampling Lemma
Smallest Enclosing Circle

Let  ,  and  be a multiset with r, N ∈ ℕ r ≤ N P′ ⊆ ℝ2 |P′ | = N

For  chosen uniformly at random from  , the folowing holds : R (P′ 

r )

𝔼 P′ ∖C′ (R)

Points in P′  outside C(R)

≤ 3 ⋅
N − r
r + 1

≤ 3 ⋅
N

r + 1



Minitest 5 solutions



A&W

Nil Ozer

Exercise Session 13
Convex Hull , Primality Test II



A&W Overview
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Definitions
Convex Hull

• line segment   : 

for   ,   

• convex :  

 A set  is called convex if   

• convex hull   :  

The convex hull of a set  is the intersection of all convex sets 
that contain S. 

v0v1

v0, v1 ∈ ℝd v0v1 := {(1 − λ)v0 + λv1 ∣ λ ∈ ℝ, 0 ≤ λ ≤ 1}

C ⊆ ℝd ∀v0, v1 ∈ C : v0v1 ⊆ C

conv(S)

S ⊆ ℝd

conv(S) := ⋂
S ⊆ C ⊆ ℝd

C konvex

C



Problem Description

given : 

to find : 

A finite set of points P ⊆ ℝ2

The convex hull of P 

Convex Hull

• Points are in general position ! 

• No three points lie on the 
same line 

• No two points share the same 
x-coordinate 



Convex Hull

• Output: We want to determine the vertices of the convex polygon. So, we want to 
determine a sequence  that defines the vertices in a 
counterclockwise order.

(q0, q1, …, qh−1), h ≤ n,

Problem Description



Convex Hull

• A pair qr∈P, with q≠r, is called a boundary edge of  , if all points in  lie to 

the left of the line segment .

P P∖{q, r}
qr

Boundary Edge

Idea :

 is the 
sequence of vertices of the 

polygon enclosing conv(P) in 
a counterclockwise order

(q0, q1, …, qh−1)

⇔ All pairs (qi-1 ,qi ) are boundary 
edges of P



Jarvis Wrap
Algorithm

Point in P with smallest x-coordinate

For sure a vertex of 
the convex hull

Find the next vertex that 
builds the boundary edge 

(qh ,qh+1 )

Consider the 
current vertex



Jarvis Wrap
Algorithm

Choose arbitrarily 

is to the right of



Jarvis Wrap
Runtime

Choose arbitrarily 

is to the right of

O (nh)  

h is the #vertices of the convex hull



Jarvis Wrap
Illustration

point with smallest x 
coordinate
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Illustration
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coordinate

q0 



Jarvis Wrap
Illustration

next

q0 



Jarvis Wrap
Illustration

next

it’s on the right of next

q0 



Jarvis Wrap
Illustration

next

nothing more 
on the right 
hand side of 
q0next 

q0 



Jarvis Wrap
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Jarvis Wrap
Illustration

q0 

q1 

q2 

q3 

q4

pnow is q0



Let’s take a break
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Convex Hull • Points are in general position ! 

• No three points lie on the 
same line 

• No two points share the same 
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Convex Hull
Local Improvement

Idea :

Given a sequence of points  , if a point  lies to the 

left of the line segment from  to  , remove  from the 
sequence

(q0, q1, …, qh−1) qi
qi−1 qi+1 qi



Local Repair
Algorithm

sorted

on the left oflower rand 
(left to right)

upper rand 
(right to left)

(q₀, ..., qₕ) is lower hull of {p₁, ..., pᵢ}

local repair

local repair

setting new points

setting new points

O (nlogn)  

O(nlogn) sorting, O(n) local repair

in increasing x-
coordinate 
order



Local Repair
Illustration
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Local Repair
Illustration

q0

q1

p3q1 on the left of qop3 , 
remove q1



Local Repair
Illustration

q0

q1q1 on the left of qop3 , 
remove q1
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Local Repair
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Local Repair
Illustration

q0

q1

q2

q3

We’ve reached the 
endpoint. Let’s do the 

same in the other 
direction
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Local Repair
Illustration

q0

q1

q2

q3

q4q5
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Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime ? ?n
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Problem Description
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A number n ∈ ℕ
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Problem Description
Primality Test

given : 

to find : 

A number n ∈ ℕ

is  prime     has no divider in n ⟺ n {2 , . . . , n − 1}

prime-counting function  :  π(x) π(x) := {n ∈ ℕ ∣ n ≤ x, n prime} ∼
x

ln x



Naive Algorithm
Primality Test

1 ) For all  test if  divides a ≤ n a n



Easy randomized test
Primality Test

1 ) Choose  uniformly at randoma ∈ {1,2, . . . , n}
2 ) if  divides  then return ‘not prime’  

3 ) else return ‘prime’ 

a n



DiskMat 🤢
Refresher

gcd : greatest common divisor

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1]

 : the multiplicative group modulo n ℤ*n
ℤ*n = {a ∈ {1,2,…, n − 1} ∣ gcd(a, n) = 1}



Euclidean Primality Test
Primality Test

1 ) Choose  uniformly at randoma ∈ {1,2, . . . , n}
2 ) if   then return ‘not prime’  

3 ) else return ‘prime’ 

gcd(a, n) > 1

n is prime ⇒ gcd(a, n) = 1 ∀a ∈ [1,n − 1] gcd := greatest common divisor

can be calculated in O((log nm)3 ) 

• if n is a prime : always correct

{a ∈ [1,n − 1] : gcd(a, n) = 1}
n − 1

=
|ℤ*n |
n − 1

• if n is not a prime : it might return a wrong answer with the probability 



DiskMat 🤢
Refresher

Fermat’s Little Theorem

Carmichael Numbers

 is primen ∈ ℕ ⟹
For all  with  a 0 < a < n

 an−1 ≡ 1 (mod n)

 is not primen⟹
There exists  with  a 0 < a < n

 an−1 ≢ 1 (mod n)

 holds for all  coprime to  for the carmichael 
number, FLT fails to detect

an−1 ≡ 1 (mod n) a n

561 = 3 ⋅ 11 ⋅ 17

ex:  

for every  s.t. gcd(  = 1 , it holds that a a,561) a560 ≡ 1 (mod 561)

it gives false positive, “probably prime”



Miller-Rabin Test
Primality Test

• if n is a prime : always correct
• if n is composite : it returns “not prime” with the probability ≥ 3/4



Questions

Nil Ozer

Feedbacks , Recommendations


