DFS - Exerase Shuaer Question

Exercise 10.2  Depth-first search (1 point).

Execute a depth-first search (Tiefensuche) on the following graph. Use the algorithm presented in the
lecture. Always do the calls to the function “visit” in alphabetical order, i.e. start the depth-first search
from A and once “visit(A)” is finished, process the next unmarked vertex in alphabetical order. When
processing the neighbors of a vertex, also process them in alphabetical order.

(a) Mark the edges that belong to the depth-first forest (Tiefensuchwald) with a “T” (for tree edge).
Solution:

In the following, both the solution to subtask (a) and the solution to subtask (d) are showed.

(b) For each vertex in the depth-first forest, give its pre- and post-number.
Solution:
A(1,16) B(5,6) C(2,13) D(3,8) E(4,7) F(14,15) G(9,12) H(10,11) I(17,18).

(c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex
ordering that results from sorting the vertices by post-number.

Solution:
Pre-ordering: A, C,D,E, B, G, H, F, L
Post-ordering: B, E,D,H, G,C, F, A, L



(d) Mark every forward edge (Vorwdrtskante) with an “F”, every backward edge (Riickwirtskante) with
a “B”, and every cross edge (Querkante) with a “C”.

Solution:
See above in the solution to part (a).

(e) Does the above graph have a topological ordering? If yes, write down the topological ordering we
get from the above execution of depth-first search; if no, argue how we can use the above execution
of depth-first search to find a directed cycle.

Solution:

The decreasing order of the post-numbers gives a topological ordering whenever the graph is
acyclic. This is the case if and only if there are no back edges. If there is a back edge, then to-
gether with the tree edges between its end points it forms a directed cycle. In our graph, the only
back edge is B — A, and the tree edges from AtoBare A - C,C - D,D — Eand E — B.
Together they form the directed cycle (A—+ C - D —E — B — A).

(f) Draw a scale from 1 to 18, and mark for every vertex v the interval I, from pre-number to post-
number of v. What does it mean if I,, C I, for two different vertices u and v?

Solution:
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If I, C I, for two different vertices u and v, then u is visited during the call of visit(v).

(g) Consider the graph above where the edge from B to A is removed and an edge from F to I is added.
How does the execution of depth-first search change? Does the graph have a topological ordering?
If yes, write down the topological ordering we get from the execution of depth-first search; if no,
argue how we can use the execution of depth-first search to find a directed cycle. If you sort the
vertices by pre-number, does this give a topological sorting?

Solution:

The execution of the depth-first search only changes in the last step, where I is visited from F instead
of starting the call of “visit(I)” after completing “visit(A)”.

This gives the following post-ordering: B, E, D, H, G, C, I, F, A. Since the graph has no back edges
anymore, it has a topological ordering. The topological ordering we get from the execution of the
depth-first search (reversed post-ordering) is: A, F, I, C, G, H, D, E, B.

The pre-ordering is A, C, D, E, B, G, H, F, I; it does not give a topological ordering, since there is for
example the edge (G, B) in the graph.

Guidelines for correction:

The following 5 elements are important in this exercise. If all of them are solved correctly, award 1
point. If at least 3 are solved correctly, award 1/2 point.

« Labeling the graph in parts (a) and (d).

+ Determining the pre- and post numbers as well as the pre- and post orderings in parts (b) and (c).
« Finding a directed cycle in part (e) using the execution of the DFS.

« Mentioning what it means if I,, C I, in part (f).

« Answering the three question in part (g).



e{roph ‘Definitions

Definition 1. Let G = (V. E) be a graph.

Forv € V, the degree deg(v) of v (german “Knotengrad”) is the number of edges that are incident
to v.

A sequence of vertices (vg, vy, ..., vi) (with v; € V for all i) is a walk (german “Weg”) if
{vi,vis+1} is an edge for each 0 < i < k — 1. We say that v and v}, are the endpoints (german
“Startknoten” and “Endknoten”) of the walk. The length of the walk (vg, vy, ..., vg) is k.

A sequence of vertices (vg, vy, ..., vi) is a closed walk (german “Zyklus”) if it is a walk, k > 2
and vy = V.
A sequence of vertices (vg, vy, ..., vk ) is a path (german “Pfad”) if it is a walk and all vertices

are distinct (i.e., v; # vj for0 <i < j < k).

A sequence of vertices (vg, vy, ..., vk ) is a cycle (german “Kreis”) if it is a closed walk, & > 3
and all vertices (except vy and vy.) are distinct.

A Eulerian walk (german “Eulerweg”) is a walk that contains every edge exactly once.

A closed Eulerian walk (german “Eulerzyklus”) is a closed walk that contains every edge exactly
once.

A Hamiltonian path (german “Hamiltonpfad”) is a path that contains every vertex.
A Hamiltonian cycle (german “Hamiltonkreis”) is a cycle that contains every vertex.

For u,v € V, we say u reaches v (or v is reachable from u; german “u erreicht v”) if there exists
a walk with endpoints u and v.

A connected component of GG is an equivalence class of the (equivalence) relation defined as
follows: Two vertices u, v € V are equivalent if u reaches v.

A graph G is connected (german “zusammenhingend”) if for every two vertices u,v € V u
reaches v or equivalently if there is only one connected component.

A graph G is a tree (german “Baum”) if it is connected and has no cycles.



Gmph. &c(ﬂ"ﬁms - Gropgn Quiz (exam question))

/5P ¢) Graph quiz: For each of the following claims, state whether it is true or false. You get 1P for
a correct answer, -1P for a wrong answer, OP for a missing answer. You get at least 0 points
in total.

As a reminder, here are a few definitions for a (directed) graph G = (V, E):

For k > 2, a (directed) walk is a sequence of vertices vy,...,v; such that for every two
consecutive vertices v;, v; 11, we have {v;,v;11} € E (resp. (v;,v;11) € E for a directed walk).

A (directed) closed walk is a (directed) walk with v; = v.

A (directed) cycle is a (directed) closed walk where k > 3 and all vertices (except v1 and vg)
are distinct.

A (directed) closed Eulerian walk is a (directed) closed walk which traverses every edge in F
exactly once.

For a vertex v in a directed graph G = (V, E), the in-degree of v is the number of edges in F
that end in v (i.e., of the form (w,v)), and the out-degree of v is the number of edges in F
that start in v (i.e., of the form (v,w)).

Claim true false
A connected graph must contain a cycle. O O
A graph G = (V, E) with |E| < |[V| — 1 is a tree. O O
Let G = (V, E) be a graph with |E| > 4, which contains a closed Eulerian walk.
If we remove one edge from E, the resulting graph does not contain a closed O O
Eulerian walk, no matter which edge we remove (the vertex set does not change).
Let G = (V, E) be a directed graph. If the in-degree and out-degree 0 0
of every vertex v € V is even, then G contains a directed closed Eulerian walk.
T/F Justification
A connected graph must contain a cycle. False Courttexrex . ¢ Tree , ®
A graph G = (V, E) with |E| < |[V| — 1 is a tree. False Cournerex . o ° i A e
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DFS Exam Questions

/ )vse . O é-n;\:s .
2P ) Depth-first search: Consider the following directed graph: 4__ 3
)‘6 )q') S-) ] L' | <2_.

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1.
Process the neighbors of a vertex in inqreasing order. I
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ii) Write out two edges ej, ez such that the directed graph above has a topological ordering
after removing ejrandres (the vertex set does not change).

Remark: There could be multiple valid solutions. In this case, you only need to write

down one of them. (L“ L )
(2,3)



/2P d) Depth-first search: Consider the following directed graph:

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1.
Process the neighbors of a vertex in increasing order.

ii) Write out all the cross edges and all the back edges (specify which ones are cross edges,
and which ones are back edges).
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BPO\@CQS SU'H\’S - Exam Queston
/ 3 P| d) Directed Acyclic Tournament

A tournament is a directed graph G = (V, E)) such that:

e G has no self loops, i.e., (v,v) € E, for all v € V. (Note that the graphs that we usually
consider have no self loops.)

e For every two distinct vertices u,v € V, either (u,v) € E or (v,u) € E but not both.

Let G-be-a-directed-acyelic-graph-that is also a tournament. Show that G has a wnique
topological sorting.

Since G is a DAG, it oy a least one 4op. sorig
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DP mmj 6(0]“ - Proof ot the end

In this problem, you are given an array A = [a1, ..., ay] of n pairwise distinct positive integers, i.e.

a; € Ly forie {1,...,n} and a; #a; fori #j € {1,..., n}.
< i

b) Show that for any array A as above, the following two conditions are equivalent.

i) There are non-empty sets I1,Ir C {1,..., n} such that 37, a; = Y, a; and I # D,

ii)"There are non-empty sets I, I C {1,..., n} such that Y7, ; a; = Y,y a; and [HN T =

0.
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