Gnmph Definition - suert frocts

In the following, let G = (V, E) be a graph, n = |V| and m = |E]|.
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(b) Every graph with m > n is connected.
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(c) If G contains a Hamiltonian path, then GG contains a Eulerian walk.
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(d) If every vertex of a non-empty graph G has degree at least 2, then G contains a cycle.
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(e) Suppose in a graph G every pair of vertices v, w has a common neighbour (ie., for all distinct
vertices v, w, there is a vertex x such that {v, 2} and {w, z} are both edges). Then there exists a
vertex p in G which is a neighbour of every other vertex in G (i.e., p has degree n — 1).
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(f) Let G be a connected graph with at least 3 vertices. Suppose there exists a vertex v¢,¢ in G so that
after deleting v¢,t, G is no longer connected. Then G does not have a Hamiltonian cycle. (Deleting
a vertex v means that we remove v and any edge containing v from the graph).
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