A&D

Exercise Session 9

Nil Ozer

A&D Overview

Math, Basices

> HS@N? . Dotahaon

L Induuchon

o LOOP - Qomh‘«\%

MNax - Suboarrasy - Nqg

- nadve dwide-cc:guer) AW,
> (OMP o x L\B

SeardNs

U Lnear Seoscn
> 3 {Yicy\gj Seorc\N

- ouoes Boura

AgD

Sorts <

Lp- RBubda Sart U Quicksoct l/ \)
L Selechon Sort (> Heapsort ore - 1o - al\l all-to - all
- Insertio Sot Gy ourr - Bound —~—
Ly [Y\Qvge_ Sos\ Ly BFS usoge. Y Oneﬁo—aﬂ “’*5‘33
'S D‘Q\LS* oL O Flogi—u)ms‘ncx\\
s Ralman- ford s Jhnson
m& S* rUQ*u.QS (> e ‘-f%‘;"\: Ve, - cloge 4w Aaection W p walls US{Y\\S ‘L\Qq
Ay O TreeS (E. A
@ Gst (Linked ;0o ‘“*j\ AV Tree. / Ly Qverview

or NS

> Peim

> Boruulca

(s Fibonace

(> NOX i\uwﬂ::j -Som
Ly Tuarp- Gona .
L Longegk - Common - oloseq . » |
o' &dﬂi- Distence . > youllkal

Outline
Quiz
Exercise Sheets

Questions from you

Graph Definitions - Exam Question

Graph Searchs - DFS
Topological Sorting

DP Mini Exam - Proof at the end

Exercise Sheets

Exercise Sheet 6

Bonus Feedback

¢ 6.]:
« Watch out for the comments !

. Tree proof structure improved :)

e 0.3:
. |Indexes ‘=

« DP structure !l

A7
N
° ° N

Peergrading

- Exercise Sheet 8 peergrading
« 8.1 this week

« Emails will be sent

Questions from you

« Asymptotic Bound Consistency in Algorithm Runtime Questions
. what you need to prove

» Often we say that you should create an algorithm with runtime at most
O(x) and then you need to justify why your algorithm is in O(x)

. |f we don't specify, head-ta says that you should give a Theta bound or at
least an O bound that is as tight as possible.

» |s atree a directed or undirected graph ?
o Iltreell

+ “directed tree”

Questions from you

Valid Counterexamples for A&D !!

» For A&D we don’t consider multigraphs

« unless explicitly specified otherwise.

no self loops or multiple edges between same vertices

- Multigraphs : self loops or multiple edges are allowed

Simple Graph Multigraph
!f ? mulf‘PlQ ﬁ %

Graph Definitions

Graph

Definitions

Definition 1. Let G = (V, F) be a graph.

Forv € V, the degree deg(v) of v (german “Knotengrad”) is the number of edges that are incident
to v.

A sequence of vertices (vg,v1,...,v) (wWith v; € V for all 7) is a walk (german “Weg”) if
{v;,v;1 1} is an edge for each 0 < ¢ < k — 1. We say that v, and vy are the endpoints (german
“Startknoten” and “Endknoten”) of the walk. The length of the walk (vg, vy, ..., v;) is k.

A sequence of vertices (vg, v1, ..., v;) is a closed walk (german “Zyklus”) if it is a walk, k£ > 2
and vg = V.

A sequence of vertices (vg, v1,...,v;) is a path (german “Pfad”) if it is a walk and all vertices

/

are distinct (i.e., v; # v for 0 <7 < 5 < k).

A sequence of vertices (vg, vy, ...,vx) is a cycle (german “Kreis”) if it is a closed walk, £ > 3
and all vertices (except vy and vy) are distinct.

A Eulerian walk (german “Eulerweg”) is a walk that contains every edge exactly once.

A closed Eulerian walk (german “Eulerzyklus”) is a closed walk that contains every edge exactly
once.

A Hamiltonian path (german “Hamiltonpfad”) is a path that contains every vertex.
A Hamiltonian cycle (german “Hamiltonkreis”) is a cycle that contains every vertex.

For u,v € V, we say u reaches v (or v is reachable from u; german “u erreicht v”) if there exists
a walk with endpoints v and v.

A connected component of GG is an equivalence class of the (equivalence) relation defined as
follows: Two vertices u, v € V are equivalent if u reaches v.

A graph (G is connected (german “zusammenhingend”) if for every two vertices u,v € V u
reaches v or equivalently if there is only one connected component.

A graph (' is a tree (german “Baum”) if it is connected and has no cycles.

Graph

Exam Question

/5P

c) Graph quiz: For each of the following claims, state whether it is true or false. You get 1P for
a correct answer, -1P for a wrong answer, OP for a missing answer. You get at least 0 points
in total.

As a reminder, here are a few definitions for a (directed) graph G = (V, E):

For k > 2, a (directed) walk is a sequence of vertices vq,...,v; such that for every two
consecutive vertices v;, v;11, we have {v;,v;11} € E (resp. (v;,v;11) € F for a directed walk).

A (directed) closed walk is a (directed) walk with v; = vg.

A (directed) cycle is a (directed) closed walk where k > 3 and all vertices (except v; and wv)
are distinct.

A (directed) closed Eulerian walk is a (directed) closed walk which traverses every edge in E
exactly once.

For a vertex v in a directed graph G = (V, E), the in-degree of v is the number of edges in E
that end in v (i.e., of the form (w,v)), and the out-degree of v is the number of edges in E
that start in v (i.e., of the form (v, w)).

Claim true false
A connected graph must contain a cycle. [[
A graph G = (V, E) with |E| < |[V| —1 is a tree. O O
Let G = (V, E) be a graph with |E| > 4, which contains a closed Eulerian walk.

If we remove one edge from F, the resulting graph does not contain a closed L]

Eulerian walk, no matter which edge we remove (the vertex set does not change).

Let G = (V, E) be a directed graph. If the in-degree and out-degree
of every vertex v € V is even, then GG contains a directed closed Eulerian walk.

Let G = (V, E) be an undirected graph. Then there is a way to direct the edges
of G such that the resulting directed graph does not contain a directed cycle.

Graph Definitions
Exam Tipps

« T/F or a proof !
- Know all of the definitions
« Don’'t mix up similar ones, realise connections!
- walk, closed walk , eulerian
- path, cycle, hamiltonian

« (Galn an intuition

Don’t rush ! Don’t gamble !!!

Do this by actually coming up with short proofs !

« Practice, practice, practice!

Graph Searchs
DFS

Graph Searchs

DFS - with pre and post order

Algorithm 4 DFS(G)

1: 1«1
2: alle Knoten unmarkiert
3: for up € V, unmarkiert do

4: Visit (ug)

Algorithm 4 DFS(G)

Graph Searchs T

. 2: alle Knoten unmarkiert
DFS - with pre and post order 3: for up € V, unmarkiert do

4: Visit (ug)

Runtime : O (|V| + |E|)

Algorithm 3 Visit(u)

1: prelu] < T; T « T +1
2: markiere u
. for Nachvolger v von u, unmarkiert do

3
4 Visit(v)
5. postlu| «— T T «+ T +1

Let’s take a break

Graph Searchs

DFS - Example

nost-order

4
RN
@ .
back edge

\) forward edge
/

@~

@
@-@-©

Graph Searchs

DFS - Example

® ®).
RN
@ .
back edge

\) forward edge
/

nost-order

OO

@
@-@-©

Graph Searchs

DFS - Example

®
DU
@ .

\) forward edge
/

nost-order

OO

@
@-@-©

Graph Searchs

DFS - Example

®
\ .
® () —

\l
/

@-)=

O,
®-@-@

nost-order

back edge

forward edge

Graph Searchs

DFS - Example

™ !

) <
AN
6
@ back edge

\) forward edge
/

nost-order

(>)=

@~
®-@-@

Graph Searchs

DFS - Example

® -

) ()
| | 4'/\
6 O
@ pack edge

\) forward edge
/

nost-order

(>)=

@~
®-@-@

d
back edge
forward edg

JORGRO

‘2, Z

i an ™

O

m

Q2

» e

ha

s, g
L ~

O3)

d
back edge
forward edg

JOROR ©

‘2, Z

i e ™

O

m

Q2

» e

ha

s, g
L ~

O3)

d
back edge
forward edg

=9~ @ ©

‘2, Z

i e ™

O

m

Q2

» e

ha

s, g
L ~

O3)

Graph Searchs

DFS - Example

®) 2/4
I
® o

® e
o NES

(>)=

ORGO
®-@-©

nost-order

back edge

forward edge

Graph Searchs

DFS - Example

<—
—
~
~~
~J
v

pre-order
post-order

back edge

forward edge

Graph Searchs

DFS - Example

™ .
B)-—®
B

©
ol SORNORNO
2 NGOG

<—
—
~
~~
~J
v

pre-order
post-order

back edge

forward edge

Graph Searchs

DFS - Example

™ .
B)-—®
B

©
ol SORNORNO
2 NGOG

<—
—
~
~~
~J
v

pre-order
post-order

back edge

forward edge

Graph Searchs

DFS - Example

™ .
B)-—®
B

©
ol OO0
2 NGOG

<—
—
~
~~
~J
v

pre-order
post-order

back edge

forward edge

Graph Searchs

DFS - Example

<—
—
~
~~
~J
v

pre-order
post-order

back edge

forward edge

Graph Searchs

DFS - Example

@ 2/11< 1/
© ™

¥
@@ 3/10 @\Q? @
) &

© o

—
—
S
~~~
~
\/

pre-order
post-order

back edge

forward edge



Graph Searchs

DFS - Example

@ 2/114 |
6 &
®

@5

pre-order
post-order

tree edge

back edge

forward edge



Graph Searchs

DFS - Example

@ 2/114 |
6 &
®

@5

pre-order
post-order

tree edge

back edge

forward edge



Graph Searchs

DFS - Example

@ 2/114 |
6 &
®

@5

pre-order
post-order

tree edge

back edge

forward edge



Graph Searchs

DFS - Example

@ 2/114 |
6 €
®

@5

pre-order
post-order

tree edge

back edge

forward edge



Graph Searchs

DFS - Example
@ 2 [ 11 1/
N\ <
© &

® ® »O ©

SISt

@) @ o
/

pre-order
post-order

tree edge

back edge

forward edge



Graph Searchs

DFS - Example
@ 2 /1 1/16
N\ <
© &

® ® O ©

SISt

@) @ o
/

pre-order
post-order

tree edge

back edge

forward edge



Graph Searchs

DFS - Exercise Sheet Question

Exercise 10.2  Depth-first search (1 point).

Execute a depth-first search (Tiefensuche) on the following graph. Use the algorithm presented in the
lecture. Always do the calls to the function “visit” in alphabetical order, i.e. start the depth-first search

from A and once “visit(A)” is finished, process the next unmarked vertex in alphabetical order. When
processing the neighbors of a vertex, also process them in alphabetical order.

(a) Mark the edges that belong to the depth-first forest (Tiefensuchwald) with a “T” (for tree edge).
(b) For each vertex in the depth-first forest, give its pre- and post-number.

(c) Give the vertex ordering that results from sorting the vertices by pre-number. Give the vertex
ordering that results from sorting the vertices by post-number.

(d) Mark every forward edge (Vorwidrtskante) with an “F”, every backward edge (Riickwidrtskante) with
a “B”, and every cross edge (Querkante) with a “C”.

(e) Does the above graph have a topological ordering? If yes, write down the topological ordering we
get from the above execution of depth-first search; if no, argue how we can use the above execution
of depth-first search to find a directed cycle.

(f) Draw a scale from 1 to 18, and mark for every vertex v the interval I, from pre-number to post-
number of v. What does it mean if I,, C I, for two different vertices v and v?

(g) Consider the graph above where the edge from B to A is removed and an edge from F to I is added.
How does the execution of depth-first search change? Does the graph have a topological ordering?
If yes, write down the topological ordering we get from the execution of depth-first search; if no,
argue how we can use the execution of depth-first search to find a directed cycle. If you sort the
vertices by pre-number, does this give a topological sorting?



Graph Searchs

DFS - Lemmas, Facts

da backedge < 3adirected closed walk

For all edges (u,v) in E except back edges : post(u) > post(v)

Reversed post-order is the topological ordering !!!



Topological Sorting

Reversed post-order

1/16
post-order : @
G/ F/ HI E/ B, D, C, A

reversed post-order : l 5/ 6
AC.D,B,E, H,F, G ()

topological sort

g
g

pre-order
post-order

tree edge

back edge

forward edge



Topological Sorting

Lemmas, Facts

Term (German) Term (English) Definition
Quelle Source Vertex with only outgoing edges (in-degree = 0).
Senke Sink Vertex with only incoming edges (out-degree = 0).
. . G I1s a DAG
4 a topological sorting =

(Directed Acyclic Graph)

Topological Sorting doesn’t have to be unique, there can be multiple valid
orders depending on the graph's structure.



HS23 , HS22

DFS, Topological Sorting

Exam Questions

/2P d) Depth-first search: Consider the following directed graph:

/2P d) Depth-first search: Consider the following directed graph:

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1.
Process the neighbors of a vertex in increasing order.

i) Draw the depth-first tree resulting from a depth-first search starting from vertex 1.
Process the neighbors of a vertex in increasing order.

ii) Write out all the cross edges and all the back edges (specify which ones are cross edges,
and which ones are back edges).

ii) Write out two edges ej, e2 such that the directed graph above has a topological ordering
after removing e; and ey (the vertex set does not change).

Remark: There could be multiple valid solutions. In this case, you only need to write
down one of them.



Topological Sorting

Exam Question

HS21

d) Directed Acyclic Tournament
A tournament is a directed graph G = (V, E) such that:

e (G has no self loops, i.e., (v,v) € E, for all v € V. (Note that the graphs that we usually
consider have no self loops.)

e For every two distinct vertices u,v € V, either (u,v) € F or (v,u) € E but not both.

Let G be a directed acyclic graph that is also a tournament. Show that G has a unique
topological sorting.




Next Week...

BFS
DFS + BFS Code Example !!



DP Mini Exam - Proof




Questions

Feedbacks , Recommendations

Nil Ozer



