
A&D

Nil Ozer

Exercise Session 6

A&D Overview

Outline

• Quiz

• Exercise Sheets

• Data Structures II

• DP I

Quiz

Exercise Sheets

• Exercise Sheet 4 bonus feedback left for next time

• Exercise Sheet 5 non-bonus questions left for next time

• Exercise Sheet 5 peergrading

• 5.3 this week

• Emails will be sent

Data Structures II

BST
Terminology

Root Node: The topmost node of the heap. Holds the maximum element !

Parent Node: A node that has one or more child nodes.

Child Node: A node directly connected to another node when moving away from the root.

Leaf Node: A node with no children (located at the bottom level).

Sibling Nodes: Nodes that share the same parent.

Level: The depth or layer of the node,
where the root is at level 0.

Height: The longest path from the root
node to a leaf.

Height of the root = 1

BST
Terminology

Root Node: The topmost node of the heap. Holds the maximum element !

Parent Node: A node that has one or more child nodes.

Child Node: A node directly connected to another node when moving away from the root.

Leaf Node: A node with no children (located at the bottom level).

Sibling Nodes: Nodes that share the same parent.

Level: The depth or layer of the node,
where the root is at level 0.

Height: The longest path from the root
node to a leaf.

Height of the root = 1

BST
BST Condition

Each node in a BST has at most two children, left child and a right child, with
the left child containing values the parent node and the right child containing
values greater than the parent node. Every node in the left subtree is less than

the root, and every node in the right subtree is greater than the root.

BST

Root Node: The topmost node of the heap. Holds the maximum element !

Parent Node: A node that has one or more child nodes.

Child Node: A node directly connected to another node when moving away from the root.

Leaf Node: A node with no children (located at the bottom level).

Sibling Nodes: Nodes that share the same parent.

Level: The depth or layer of the node,
where the root is at level 0.

Height: The longest path from the root
node to a leaf.

Height of the root = 1

BST Condition :

BST
Search(x)

1. If curr == null , you’re at the leaf and you haven’t found x. Your search is
done

2. If curr == x , you’ve found x !!

3. If curr < key , search the right subtree

4. If curr > key , search the left subtree

5. Repeat 3 and 4 starting from the root until you have one of the cases 1
and 2

We use the BST condition

BST Condition :

BST
remove(x)

Case 3 : x has 2 children

BST Condition :

Case 2: x has 1 childCase 1 : x has no children

BST
Problem

BST Condition :

• Searching is in O(h)

• Our h doesn’t have to be log(n). There’s a case where h = n :

Still a BST !!

AVL Tree
AVL Tree Condition

AVL tree is a self-balancing BST where the difference between heights
of left and right subtrees cannot be more than one for all nodes.

+

AVL-Tree or not ?
AVL-Tree Condition :

AVL-Tree or not ?
AVL-Tree Condition :

 hr = 2 hl = 3

 hl = 2 hr =1

 hl = 1

 hr = 0

 hr = 0

 hl = 1 ✅

AVL-Tree or not ?
AVL-Tree Condition :

AVL-Tree or not ?
AVL-Tree Condition :

 hr = 2 hl = 4

 hl = 2 hr =1

 hl = 1 hr = 0

 hr = 0 hl = 3 hr =1 hl = 1

AVL-Tree or not ?
AVL-Tree Condition :

 hr = 2 hl = 4

 hl = 2 hr =1

 hl = 1 hr = 0

 hr = 0 hl = 3 hr =1 hl = 1
❌

AVL Tree
Rebalancing

AVL Tree
LL - Rotation

AVL Tree
RR - Rotation

AVL Tree
LR - Rotation

AVL Tree
RL - Rotation

BST and AVL-Tree
Exam Question (FS23)

Trees
Exam Tipps

• Know the tree condition , always keep in mind !

• Know how to insert, know how to delete

• Be able to illustrate an example by hand !

• Don’t mix up the trees !!!

Let’s take a break

DP

DP
How to learn

• Theory, written tasks :

• Exam questions T3 !!

• Exercise sheets

• geeksforgeeks

• Coding :

• CodeEx exercises , my videos

• Old Exam exercises

• Leetcode https://leetcode.com/studyplan/dynamic-programming/

Always a combination of the
ideas dicussed in lecture !

Table ? 🙅

https://leetcode.com/studyplan/dynamic-programming/

DP
Written Question Format

DP
Introduction Exercise

DP
How to learn

• Theory, written tasks :

• Exam questions T3 !!

• Exercise sheets

• geeksforgeeks

• Coding :

• CodeEx exercises , my videos

• Old Exam exercises

• Leetcode https://leetcode.com/studyplan/dynamic-programming/

Always a combination of the
ideas dicussed in lecture !

Table ? 🙅

https://leetcode.com/studyplan/dynamic-programming/

Maximum Subarray Sum
Problem : find the subarray that has the maximum sum

Examples :

[2, 3, -8, 7, -1, 2, 3]

[-2, -4]

[5, 4, 1, 7, 8]

Inputs : Outputs :

11

-2

25

Subarray :

[7, -1, 2, 3]

[-2]

[5, 4, 1, 7, 8]

Maximum Subarray Sum
Problem : find the subarray that has the maximum sum

Definition of the DP table :

Computation of an entry :

Initialization :

Recursion :

Extracting the solution :

DP[i] = Ri

Idea : Randmax Rj = max Sij
i ≤ j

where Sij = ai + ai+1 + … + aj

The solution is max{ DP[i], 0 }

DP[0] = A[0]

DP[i] = max{ ai , Ri-1 + ai }
New subarray starting with ai Adding ai to the current subarray

Jump Game
Problem : Given an array where each element represents the max number of
steps that can be made forward from that index,find the minimum number of
jumps to reach the end of the array starting from index 0.

Example:

Jump Game Problem : Given an array where each element represents the max number of
steps that can be made forward from that index,find the minimum number of
jumps to reach the end of the array starting from index 0.

Definition of the DP table :

Computation of an entry :

Initialization :

Recursion :

Extracting the solution :

DP[i] = “Minimum number of jumps to reach i”

The solution is at DP[n-1]

DP[0] = 0

DP[i] = min { 1 + DP[j] | 1 ≤ j < i ∧ j + A[j] ≥ i }

Longest Common Subsequence
Problem : Given two strings, A and B, the task is to find the length of the
Longest Common Subsequence

Examples :

“ABC" and “ACD”

‘AGGTAB” and “GXTXAYB”

“ABC” and “CBA”

Inputs : Outputs :

2

4

Subsequence :

“AC”

“GTAB”

1 “A” , “B” or “C”

A subsequence is a string generated from the original
string by deleting 0 or more characters and without
changing the relative order of the remaining characters.

Longest Common Subsequence

Definition of the DP table :
Computation of an entry :

Initialization :
Recursion :

Extracting the solution :

DP[i][j] = LCS of A[0..i] and B[0..j]

Idea : For every pair A[i] and B[j] there are exactly 3 options

The solution is at DP[n][m]

DP[0][j] = 0

DP[i][j] =

use them in the subsequence

don’t use A[i]

A subsequence is a string generated from the original string
by deleting 0 or more characters and without changing the
relative order of the remaining characters.

• Use them in the subsequence
• Don’t use A[i]
• Don’t use B[i]

DP[i][0] = 0

DP[0…n][0…m]

max { DP[i-1][j-1] + 1 , DP[i-1][j] , DP[i][j-1] }

max { DP[i-1][j] , DP[i][j-1] }

if A[i] == B[j]

else
don’t use B[j]

Edit Distance
Problem : Given two strings A and B, find the minimum number of edits
(operations) to convert A into B

Examples :

“cat" and “cut”

“sunday” and “saturday”

Inputs : Outputs :

1

3

Operations :

replace a with u

convert un to atur :

replace n by r insert a, insert t

Operations :

Insert : Insert any character after or before any index of A

Remove : Remove a character of A

Replace : Replace a character at any index of A with some other character

Edit Distance

Definition of the DP table :
Computation of an entry :

Initialization :
Recursion :

Extracting the solution :

DP[i][j] = ED of A[0..i] and B[0..j]

Idea : For every element of A , 3 things can happen

The solution is at DP[n][m]

DP[0][j] = j

DP[i][j] =

replace A[i] with B[j]delete A[i]

• will be deleted
• something gets inserted afterwards
• will be replaced to match B[j]

DP[i][0] = i

DP[0…n][0…m]

min { DP[i-1][j] + 1 , DP[i][j-1] + 1 , DP[i-1][j-1] } if A[i] == B[j]

else

add B[j] to the end

Insert : Insert any character after or before any index of A

Remove : Remove a character of A

Replace : Replace a character at any index of A with some other characterOperations:

min { DP[i-1][j] + 1 , DP[i][j-1] + 1 , DP[i-1][j-1] + 1 }

Edit Distance to Subsequence
CodeExpert

Next Week

Questions

Nil Ozer

Feedbacks , Recommendations

