A&D

Exercise Session 6

Nil Ozer

A&D Overview

Math, Basices

> HS@N? . Dotahaon

L Induuchon

o LOOP - Qomh‘«\%

MNax - Suboarrasy - Nqg

- nadve dwide-cc:guer) AW,
> (OMP o x L\B

SeardNs

U Lnear Seoscn
> 3 {Yicy\gj Seorc\N

- ouoes Boura

AgD

Sorts <

Lp- RBubda Sart U Quicksoct l/ \)
L Selechon Sort (> Heapsort ore - 1o - al\l all-to - all
- Insertio Sot Gy ourr - Bound —~—
Ly [Y\Qvge_ Sos\ Ly BFS usoge. Y Oneﬁo—aﬂ “’*5‘33
'S D‘Q\LS* oL O Flogi—u)ms‘ncx\\
s Ralman- ford s Jhnson
m& S* rUQ*u.QS (> e ‘-f%‘;"\: Ve, - cloge 4w Aaection W p walls US{Y\\S ‘L\Qq
Ay O TreeS (E. A
@ Gst (Linked ;0o ‘“*j\ AV Tree. / Ly Qverview

or NS

> Peim

> Boruulca

(s Fibonace

(> NOX i\uwﬂ::j -Som
Ly Tuarp- Gona .
L Longegk - Common - oloseq . » |
o' &dﬂi- Distence . > youllkal

Outline

Quiz

Exercise Sheets

Data Structures ||

DP |

Exercise Sheets

« Exercise Sheet 4 bonus feedback left for next time

« Exercise Sheet 5 non-bonus questions left for next time

- Exercise Sheet 5 peergrading
« 5.3 this week

« Emails will be sent

Data Structures li

BST

Terminology

8
3 10
1 6 14

4 4 13

Root Node: The topmost node of the heap. Holds the maximum element !
Level: The depth or layer of the node,

Parent Node: A node that has one or more child nodes. where the root is at level O.
Child Node: A node directly connected to another node when moving away from the root. Height: The longest path from the root

node to a leaf.
Leaf Node: A node with no children (located at the bottom level).

Height of the root =1
Sibling Nodes: Nodes that share the same parent.

BST

Terminology

.’)\‘\ N
(3) 10
\\;r L ‘\:1/ \\\\ L ﬂ/\1’
a2l \4\(//\’/ \\\\ ’/\)/ - N
! \ |)
1 .6 14 |
N \\ "\’/ \\}‘ J/
.\\ / \\\ /,’/ﬁ*\\\
[\ 4 ,] \ 7 J [\ 13 /) R
S N N NULL NULL
Root Node: The topmost node of the heap. Holds the maximum element !
Level: The depth or layer of the node,
Parent Node: A node that has one or more child nodes. where the root is at level O.
Child Node: A node directly connected to another node when moving away from the root. Height: The longest path from the root

node to a leaf.
Leaf Node: A node with no children (located at the bottom level).

Height of the root =1
Sibling Nodes: Nodes that share the same parent.

BST
BST Condition

Each node in a BST has at most two children, left child and a right child, with
the left child containing values the parent node and the right child containing
values greater than the parent node. Every node in the left subtree is less than

the root, and every node in the right subtree is greater than the root.

/®\

TX<T,

BST Condition : X

NULL
@) (1) (i
NULL NULL
Root Node: The topmost node of the heap. Holds the maximum element !
Level: The depth or layer of the node,
Parent Node: A node that has one or more child nodes. where the root is at level O.
Child Node: A node directly connected to another node when moving away from the root. Height: The longest path from the root

node to a leaf.
Leaf Node: A node with no children (located at the bottom level).

Height of the root =1
Sibling Nodes: Nodes that share the same parent.

BST Condition : o

N
SBe§|Ih(x) /T\ /T\

We use the BST condition <X <M

1. If curr==null, you're at the leaf and you haven’t found x. Your search is
done

2. If curr==x, you've found x !

3. If curr < key, search the right subtree
4. If curr > key , search the left subtree
5.

Repeat 3 and 4 starting from the root until you have one of the cases 1
and 2

BST

remove(x)

Case 1: x has no children

Case 2: x has 1 child

BST Condition : X

/N [

T X <T,

Case 3 : x has 2 children

BST Condition : /@
BST b
Problem /T\ /T\

« Searching isin O(h)

« Our h doesn’t have to be log(n). There’s a case where h=n:

3 < Still a BST !

AVL Tree

AVL Tree Condition

AVL tree is a self-balancing BST where the difference between heights
of left and right subtrees cannot be more than one for all nodes.

| he(x) = ()| £ 4

hy X)

AVL-Tree or not ?

AVL-Tree Condition :

AVL-Tree or not ?

AVL-Tree Condition :

©,
7N O
T, <X <T, | he) =h)| 2 4

AVL-Tree or not ?

AVL-Tree Condition :

®
7N /®\
T, <X <T, | he) =h)| 2 4

AVL-Tree or not ?

AVL-Tree Condition :

®
7N O
T, <X <T, | he) =h)| 2 4

AVL-Tree or not ?

AVL-Tree Condition :

®
7N /®\
T, <X <T, | he) =h)| 2 4

AVL-Tree Condition :

ONErY,
- -
AV L Tree Figure 3.2: All possible rotations and their next state /T\ /T\
T, X <T, | he ()= h ()| £ 4

Rebalancing

balanced

AVL-Tree Conditio

AVL Tree A A 5 A

LL - Rotation

LL /
© (2,

.
P AN

balanced

AVL-Tree Conditio

AVL Tree A A 5 A

RR - Rotation

(1) RR
@

VN AIENZAIEN

balanced

AVL-Tree Conditio

AVL Tree A A 5 A

LR - Rotation

LR 3 e
oS EN

(1 (3
Aeh AIENZAIEN

balanced

AVL-Tree Conditio

AVL Tree A A 5 A

RL - Rotation -

og@le
ZAIENZAIEN

balanced

BST and AVL-Tree

Exam Question (FS23)

ii) Draw the AVL tree that is obtained when inserting the keys 3,2,7,6,8,9 in this order
into an empty tree (it suffices to draw only the final tree).

/ 3 P| b) Search trees:

i) Draw the binary search tree obtained from the following tree by performing the two
operations INSERT(45) and DELETE(30), in that order.

iii) Draw the AVL tree that is obtained by deleting key 65 from the tree below.

Trees
Exam Tipps

- Know the tree condition, always keep in mind !

« Know how to insert, know how to delete

- Be able to illustrate an example by hand !

« Don't mix up the trees !!!

Let’s take a break

DP

How to learn

« Theory, written tasks :
Always a combination of the

« Exam qguestions T3 ! , , ,
. ideas dicussed in lecture !

« Exercise sheets

- geeksforgeeks

. Coding : Table ? &
« CodeEx exercises , my videos

« Old Exam exercises

e Leetcode https://leetcode.co /studyplan/dynamic-programming/

https://leetcode.com/studyplan/dynamic-programming/

DP

Written Question Format

a) Provide a dynamic programming algorithm that, given an array A of n pairwise distinct
positive integers as above, returns True if there are two different (non-empty) subsets I; and
I, of {1,...,n} (i.e. 0 # I1,Io, C {1,...,n} and I} # I5) such that D icl, @i = D ier, @i and

False otherwise. In particular, the algorithm does not have to return the sets I and Is.

For example,

e For the array [2, 3,4, 5, 7] the output should be True since for I} = {1,2,4} and I» = {2,5}

we have), c; a;=2+3+5=10=3+T7=) . a;.

e For the array (2, 3,4, 10, 20] the output should be False since there are no two different

non-empty subsets Iy and Iz of {1,2,3,4,5} that satisfy » ,c; ai =) ;. ai.

In order to obtain full points, your algorithm should run in time O(n - S), where S =" | a;.
In your solution, address the following aspects:

1.
2.
3.

Dimensions of the DP table: What are the dimensions of the D P table?

Subproblems: What is the meaning of each entry?

Recursion: How can an entry of the table be computed from previous entries? Justify
why your recurrence relation is correct. Specify the base cases of the recursion, i.e., the
cases that do not depend on others.

Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps?

Extracting the solution: How can the solution be extracted once the table has been filled?

Running time: What is the running time of your solution?

DP

Introduction Exercise

Consider the recurrence

A =1
Ay =2
A3 =3
Ay =14

A, =Apn 1+ A 3+2A4, 4forn > 5.

Compute A, using bottom-up dynamic programming and state the run time of your algorithm.
Address the following aspects in your solution:

(1) Definition of the DP table: What are the dimensions of the table D P|...|? What is the meaning
of each entry?

(2) Computation of an entry: How can an entry be computed from the values of other entries?
Specify the base cases, i.e., the entries that do not depend on others.

(3) Calculation order: In which order can entries be computed so that values needed for each entry
have been determined in previous steps?

(4) Extracting the solution: How can the final solution be extracted once the table has been filled?

(5) Run time: What is the run time of your solution?

DP

How to learn

« Theory, written tasks :
Always a combination of the

« Exam qguestions T3 ! , , ,
. ideas dicussed in lecture !

« Exercise sheets

- geeksforgeeks

. Coding : Table ? &
« CodeEx exercises , my videos

« Old Exam exercises

e Leetcode https://leetcode.co /studyplan/dynamic-programming/

https://leetcode.com/studyplan/dynamic-programming/

Maximum Subarray Sum

Problem : find the subarray that has the maximum sum

Examples : Inputs : Outputs : Subarray :
[2/ 3/ -81 7/ -11 21 3] 11 [71 -11 21 3]
[-2, -4] -2 [-2]

[51 4/ 1/ 7I 8] 25 [51 4/ 1/ 7/ 8]

Maximum Subarray Sum

Problem : find the subarray that has the maximum sum
Q

Definition of the DP table: DPli] = R

Computation of an entry :

Initialization: DP[QO] = A[O]

Recursion : DP[i]= max{ai R 1+a;}

New subarray starting with ai Adding aijto the current subarray

Extracting the solution: The solution is max{ DP[i], O }

Jump Game

Problem : Given an array where each element represents the max number of
steps that can be made forward from that index,find the minimum number of
jumps to reach the end of the array starting from index O.

Example:

|43532/11‘f‘f13 At
tprionge

TN ~—— T

Ju mp Ga me Problem : Given an array where each element represents the max number of

steps that can be made forward from that index,find the minimum number of
jumps to reach the end of the array starting from index O.

Definition of the DP table: DPJ[i] = “Minimum number of jumps to reach i”

Computation of an entry :

Initialization: DP[0O] =0

Q Recursion : DP[i]= min{1+DP[j] | 1=<j<i A j+A[j]l2i}

Extracting the solution: The solution is at DP[n-1]

Longest Common Subsequence %

Problem : Given two strings, A and B, the task is to find the length of the
Longest Common Subsequence

A subsequence is a string generated from the original
string by deleting O or more characters and without
changing the relative order of the remaining characters.

Examples : Inputs : Outputs : Subsequence :
IIABC" and IIACDII 2 IIACII
‘AGGTAB” and “GXTXAYB” 4 “GTAB”

IIABCII and IICBAII 1 IIAII) IIBII Or IICII

Longest Common Subsequence ::nmsmimaz

fh ema ght

Wbty - - fow Lmvmon
-yl o

: Tl |G[|& R
Ayt L[2T

DP[O...n][O...m]
Definition of the DP table : DPI[i][j] = LCS of A[O..i] and B[O..j]

Computation of an entry :
Initialization : DP[O][j]=0 DP[i][0] =0

RecurSiOn : use them in the subsequence
- max { DP[i-1][j-1]+1,DP[i-11[j] , DPLiILj-11} if ALi] == BJ[j]
DPLi]lj] = o .
max { DP[i-1][j] , DP[il[j-1]1} else
don’t use Ali] don’t use BJ[j]

Extracting the solution : The solution is at DP[n][m]

Edit Distance

Problem : Given two strings A and B, find the minimum number of edits
(operations) to convert A into B

Operations : Replace : Replace a character at any index of A with some other character

Insert : Insert any character after or before any index of A

Remove : Remove a character of A

Examples : Inputs : Outputs: Operations:

“cat" and “cut” 1 replace a with u

“sunday” and “saturday” 3 convert un to atur :

replace n by r insert a, insert t

Operations: Replace : Replace a character at any index of A with some other character

Remove : Remove a character of A

Edit Distance
Q

« will be deleted

« will be replaced to match B[j]

Definition of the DP table : DP[i][j] = ED of A[O..i] and B[O..j] DP[O...n][0O...m]
Computation of an entry :

Initialization : DP[i][0] =i DP[O][j] =]
Recursion :
min {DPLI-T][]1+1, , DP[i-1][j-11} it Ali] == BJ[]]
DPLILS =y -
min { DP[i-11[j1+1, ,DP[i-1][j11+1} else
delete Ali] replace Ali] with BJ[j]

Extracting the solution : The solution is at DP[n][m]

CodeExpert
Edit Distance to Subsequence

sk EXCITED“CM

Next Week

Questions

Feedbacks , Recommendations

Nil Ozer

