A&D

Exercise Session 13

Nil Ozer

A&D Overview

Math, Basices

> HS@N? . Dotahaon

L Induuchon

o LOOP - Qomh‘«\%

MNax - Suboarrasy - Nqg

- nadve dwide-cc:guer) AW,
> (OMP o x L\B

SeardNs

U Lnear Seoscn
> 3 {Yicy\gj Seorc\N

- ouoes Boura

AgD

Sorts <

Lp- RBubda Sart U Quicksoct l/ \)
L Selechon Sort (> Heapsort ore - 1o - al\l all-to - all
- Insertio Sot Gy ourr - Bound —~—
Ly [Y\Qvge_ Sos\ Ly BFS usoge. Y Oneﬁo—aﬂ “’*5‘33
'S D‘Q\LS* oL O Flogi—u)ms‘ncx\\
s Ralman- ford s Jhnson
m& S* rUQ*u.QS (> e ‘-f%‘;"\: Ve, - cloge 4w Aaection W p walls US{Y\\S ‘L\Qq
Ay O TreeS (E. A
@ Gst (Linked ;0o ‘“*j\ AV Tree. / Ly Qverview

or NS

> Peim

> Boruulca

(s Fibonace

(> NOX i\uwﬂ::j -Som
Ly Tuarp- Gona .
L Longegk - Common - oloseq . » |
o' &dﬂi- Distence . > youllkal

Outline

« Shortest Paths - all to all
« DP Recap

« Exam preparation session organization

Shortest Paths

—» Qnortest Patns
n/ —

o\l-to- all

O ONe-to ~all use
p Flow - Warsna\l

L Querview

Recap
Shortest Paths (one - to - all)

G (directed/undirected) Algorithm Runtime

unweighted , all edges with the

same positive weight BFS usage O (VI+IED
weighted , nonnegative edge
weights Dijsktra O (V] + |E]) * log n)

c(e) >0

weighted, positive and (possibly)
negative edge weights Belmann-Ford O (V| * |E|)
cle) eR

Shortest Paths
All-to-all

G (directed/undirected)

unweighted , all edges with the same
positive weight

weighted , nonnegative edge weights
c(e) 20

weighted, positive and (possibly)
negative edge weights
cle) eR

weighted, positive and (possibly)
negative edge weights
c(e) e R, no negative cycles

Algorithm

n X BFS

n x Dijsktra

n X Belmann-Ford

Floyd - Warshall

Johnson

Runtime

O (IVI* (IVI +[E]))

O (IVI* (VI + [E]) * log(V]))

OCIVI*IE[+ [VI2log(V]))

O (IVI* V[*EI)

O(|VI[®)

O (VI (V] +
O(IVI*[El + IV

E[) * log n)

2log(|VI))

with Fibonacci-Heap

with Fibonacci-Heap

All-to-all Shortest Paths
Floyd-Warshall

oy
~ P d

Definition of the DP table :
DPLi][ullv] = “The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"

intermediate vertices : =)0 =50 AAAAp @ —) O

irtermediate
vertices

All-to-all Shortest Paths

F I OYd 'Wa rS h a I I DP[i][u][v] = “The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"

FLOYD-WARSHALL(G = (V, E), ¢)

0 faS U =17v iSt, no need to walk, we're already there

]. 'DP[O] [’LL] [’U] — C(U, ’U) falls (U, ’U) - E iSt, just walk that edge, you don't use any intermediate vertices

OO sonst you can’t reach v without using intermediate vertices

2 fori1+1,...,ndo

3 foru<+1,...,n do
4 for v+ 1,...,ndo
5 DPlil|u]|v] < min(DP|i—1||u]|v], DP|i—1]|ul[i]| + DP|i—1]||i]|v])

6 I‘eturn DP don’t use vertex i use vertex i

All-to-all Shortest Paths

F I OYd 'Wa rS h a I I DP[i][U][V] = “The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"

FLOYD-WARSHALL(G = (V, E), ¢)

0 fallS uUu=7mv iSt, no need to walk, we're already there
]_ DP[O] [’u,] [’U] — C(U,”U) falls (u, 'U) - E iSt, just walk that edge, you don’t use any intermediate vertices
OC sonst you can't reach v without using intermediate vertices
2 fori+1,....,ndo
3 for u<+<1,...,n do
4 for v+ 1,....,ndo
5 DPli][u][v] < min(DP[i—1]|[u][v], DP[i—1][u][i] + DP[i—1][i][v])
6 return DP don’t use vertex i se vertex i
DP [i-1]{u][v] DP [i-1]{ulli] + DPLi-1]i]lv]
shortest walk from u to v using {1...i-1} shortest walk from u to i using {1...i-1} + shortest
o« AN o walk from i to v using {1...i-1}
w .V

vertices from

$4.-09%

All-to-all Shortest Paths

F I OYd 'Wa rS h a I I DP[i][U][V] = “The length of the shortest u-v walk that only uses the intermediate vertices from {1...i}"

FLOYD-WARSHALL(G = (V, E), ¢)

Runtime: O(n3)

O fallS U =7mv€ iSt, no need to walk, we're already there
1 DP[O] [u] [’U] «— C(u,v) fal]_b (u. v) - E iSt, just walk that edge, you don't use any intermediate vertices
e sonst you can't reach v without using intermediate vertices o
) forie L ndo Solution at: DP[n][][]
3 for u+1,.... n do “using all vertices”
4 for v« 1,..., n do
5 DPli][u|[v] « min(DP[i—1]|[u][v], DP[i—1]|[u][i]+ D P[i—1][i][v])
6 return DP don’t use vertex i se vertex |
DP [i-1][u][v] DP [i-1]{u]li] + DPLi-1]{i]{v]
shortest walk from u to v using {1...i-1} shortest walk from u to i using {1...i-1} + shortest
o« AN o walk from i to v using {1...i-1}

W | v
vertices from

$4.-09%

All-to-all Shortest Paths
Floyd-Warshall , Negative Closed Walk Detection

3 a negative closed walk < 3 v with DP[n]|v][v] <O

DP[n][v][v] : The shortest walk from v to v using {1...n}

<0 V

£y

v

All-to-all Shortest Paths

Johnson

DOES NOT WORK WITH NEGATIVE CYCLES !

We know Dijkstra, how can we make all edge weights > 0 ?

All-to-all Shortest Paths

Johnson - Making all edge weights > O

All-to-all Shortest Paths

Johnson - Making all edge weights > O

c(0,2)=-2 ¢c(21)=1 c(01)=0

All-to-all Shortest Paths

Johnson - Making all edge weights > O

All-to-all Shortest Paths

Johnson - Making all edge weights > O

« Add a new vertex z, and connect it to

every vertex in the original G with and
edge with cost O

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

» Find h(u) for every u "t Belman forg
:
n(u) :=length of the shortest path from z to u e

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

» Find h(u) for every u "t Belman forg
:
n(u) :=length of the shortest path from z to u e

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

» Find h(u) for every u "0 Bellman. ory .,
'
n(u) :=length of the shortest path from z to u e

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

» Find h(u) for every u "0 Bellman. ory .,
'
n(u) :=length of the shortest path from z to u e

 Calculate c’(u,v) for every edge
c'(u,v) := + h(u) - h(v)

All-to-all Shortest Paths

Johnson - Making all edge weights > O

h(2) = -2
« Add a new vertex z, and connect it to a
every vertex in the original G with and / \
edge with cost O hm)zo@ Ghmz_1
- Find h(u) for every u " BelmanForg . g
h(u) :=length of the shortest path from z to u e o O
 Calculate c’(u,v) for every edge
o) c’(0,2) = +h(0)-h(2)=-2+0-(2)=0
c'(U,V) := + h(u) - n(v
c’(0,1) = +h(0)-h(1)=0+0-(1)=1

c'(2,1) = +h(2)-h(1)=1+(-2)-(-1)=0

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

+ Find h(u) for every u " Bellman. oy, 0
n(u) :=length of the shortest path from z to u e 0™ ,/"O
 Calculate c’(u,v) for every edge
c’(0,2) = +h(0)-h(2)=-2+0-(-2)=0
c'(u,v) := + h(u) - h(v)
c’(0,1) = +h(0)-h(1)=0+0-(1) =1

c'(2,1) = +h(2)-h(1)=1+(-2)-(-1)=0

All-to-all Shortest Paths

Johnson - Making all edge weights > O

- Add a new vertex z, and connect it to
every vertex in the original G with and
edge with cost O

» Find h(u) for every u "0 Bellman. ory .,
'
n(u) :=length of the shortest path from z to u e

 Calculate c’(u,v) for every edge
c'(u,v) := + h(u) - h(v)

All-to-all Shortest Paths

Johnson

DOES NOT WORK WITH NEGATIVE CYCLES !

Shortest Paths

Overview

one-to-all all-to-all

G (directed/undirected) Algorithm Runtime
G (directed/undirected) Algorithm Runtime
unweighted , a.II.edges.W|th the same " % BES O (VI * (V] + E]))
positive weight
UGG, eI | arousage | 0V
weighted, nonr;?eg)a;u(\;e edge weights n x Dijsktra O (VI * (IV] + [E]) * log(IV]))
weighted , nonnegative edge
weights Dijsktra O ((JV| + |E|) * log n)
c(e)2 0 o | Ry n x Belmann-Ford O (VI * VI * [E])
weighted, positive an 0SSi
weighted, positive and (possibly) ° negatliave edge wei(gphts Y)
negative edge weights Belmann-Ford* O (V| * |E|) cle) € R
c(e) eR Floyd - Warshall* O([V|3)
topological sorting +
G has no cycles S DP 7 O (IV] + [E]) weighted, positive and (possibly)
negative edge weights Johnson O (V] * (JV| + |E]) * log n)

c(e) e R, no negative cycles

*negative closed walk detection

Shortest Paths
Exam Tipps

- Know every detail of the “overview”
» Graph Modelling
« Model the problem correctly, define G,V,E,w
« Know which algorithm to apply for that particular graph problem
- BFS,DFS
- Shortest Paths
« MST

» Practice, practice, practice !l

DP

Recap

/9P

Theory Task T3.

Let A = [ay,aq,...,a,] be an array of non-negative integers. Given A and a non-negative integers
S > 0, we want to determine whether S can be written as a (non-repeating) sum of elements of A,

where we are allowed to take the square of elements. Formally, we want to determine if there exist
I,JCA{L,2,....n} with INJ=0,TUJ ={1,2,...,n} such that:

S = Zai—l—Za?.

il jed

Provide a dynamic programming algorithm that outputs True if this is possible, and False otherwise.
For example,

e The inputs A = [2,4,4], S = 34 should result in True, since 34 = 2 + 42 + 42,
e The inputs A = [2,4,4], S = 35 should result in False.
e The inputs A = (2,4, 3,22], S = 21 should result in False.

In order to obtain full points, your algorithm should run in time O(n? - S). Address the following
aspects of your solution:

1) Definition of the DP table: What are the dimensions

of each entry? Theory Task T3.

2) Computation of an entry: How can an entry be co
Specify the base cases, i.e., the entries that do not ¢

. . . recede it in th .
3) Calculation order: In which order can entries be ¢ s

entry have been determined in previous steps? For example,

4) Eztracting the solution: How can the final solution b

5) Running time: What is the running time of your alg;

{2,2,4,6,0}.
of n and S, and justify your answer.

An array of non-negative integers A = [aq,..
{2,...,n}, there exists a (possibly empty) set I C {1,...,i — 1} such that a; = } ;. a;. In other s 7
terms, every integer in the array except the first one must be the sum of (distinct) integers that

e The array [2,2,4,6,0,12] is summy, because 2 =2,4=2+4+2,6=2+4,12=2+4+6.

Theory Task T3.

You are given an array of n natural numbers aq, ..

el el

For example,

e The answer for the input (a;)i<n = [2,4,8,1,4,5,3], A =8 and B = 30 is yes because the set
of indices I = {1,4,6}, which corresponds to (a;)i<;r = [2,1, 5], yields the sum 24+1+5 =38

and the sum-of-squares 2% + 12 4+ 5% = 30.

e The answer for the input (a;)i<n = [2,4,8,1], A= 6 and B = 15 is no.

Provide a dynamic programming algorithm that determines whether such a subset [exists. In order
to get full points, your algorithm should have an O(n- A - B) runtime. Address the following aspects

in your solution:

.,a, € N, and two natural numbers A, B € N.
You want to determine whether there is a subset I C {1,...,n} satisfying

Z%’:A and Z(LZZ:

B.

‘heory Task T3.

/9P

‘ou are given an array of n natural numbers aq, .
wiltiple of 3. You want to determine whether it is possible to partition {1,...,n} into three disjoint
1bsets I, J, K such that the corresponding elements of the array yield the same sum, i.e.

Sa=Y 0= a=1

el

/9P

.., 0y € N summing to A := > | a;, which is a

JjeJ keK

lote that I,J, K form a partition of {1,...,n} ifand only if INJ =1TNK = JNK = () and

UJUK ={1,...,n}.

or example, the answer for the input [2,4,8,1,4,5,3] is yes, because there is the partition {3,4},

2,6}, {1,5,7} (corresponding to the subarrays [8,1], [4,5], [2,4, 3], which are all summing to 9).

>lution:

1) Definition of the DP table: What are the dimensions of the table DPJ[...] 7 What is the

meaning of each entry 7

“be com
/8P 1o not de
., ay,] is called summy if and only if, for all i € es be co

lution be

our algo1

e The array [2,2,4,6,0,13] is not summy, since 13 can not be written as a sum of integers from

Provide a dynamic programming algorithm that, given an array A of length n, returns True if the
array is summy, and False otherwise. In order to obtain full points, your algorithm should have
an O(n - max A) runtime (where max A means the maximum value of entries in A). Address the

following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP[...] ? What is the

meaning of each entry 7

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Extracting the solution: How can the final solution be extracted once the table has been filled

?

5) Running time: What is the running time of your algorithm ? Provide it in ©-notation in terms

of n and max A, and justify your answer.

)In the other hand, the answer for the input [3,2,5, 2] is no.

rovide a dynamic programming algorithm that determines whether such a partition exists. Your
lgorithm should have an O(nA?) runtime to get full points. Address the following aspects in your

1) Definition of the DP table: What are the dimensions of the table DP[...] 7 What is the

meanino nf each entrv?

Theory Task T3. /9P

Let m,r be two integers satisfying m > 2 and 0 < r < m. We say that a finite set A C N of natural

numbers is (m, r)-aligned if
(Z :c) modm =r.

z€A

Note that for A = &, we adopt the convention that Z x = 0. Hence, the empty set is (m,0)-aligned

z€A
for every m > 0.

Given three integers m,r,n such that 0 < r < m < n and m > 2, we would like to determine the
number of subsets of {1,2,...,n} which are (m,r)-aligned.

For example,

e If r =1, m =2 and n = 3, the subsets of {1,2,3} that are (3,1)-aligned are {1}, {3}, {1,2}
and {2,3}. Hence, the answer is 4.

Provide a dynamic programming algorithm that solves the problem. In order to get full points, your
algorithm should have an O(n - m) runtime. Address the following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP[...] ? What is the
meaning of each entry ?

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Eztracting the solution: How can the final solution be extracted once the table has been filled
?

5) Runmning time: What is the running time of your algorithm ? Provide it in ©-notation in terms
of n, m and r, and justify your answer.

n an entry be computed from the values of other entries?
ries that do not depend on others.

can entries be computed so that values needed for each
vious steps?

1e final solution be extracted once the table has been filled?

r time of your algorithm? Provide it in ©-notation in terms
.

DP

Recap

/9P

Theory Task T3.

Let A = [ay,aq,...,a,] be an array of non-negative integers. Given A and a non-negative integers
S > 0, we want to determine whether S can be written as a (non-repeating) sum of elements of A,

where we are allowed to take the square of elements. Formally, we want to determine if there exist
I,JCA{L,2,....n} with INJ=0,TUJ ={1,2,...,n} such that:

Provide a dynamic programming algorithm that outputs True if this is possible, and False otherwise.
For example,

e The inputs A = [2,4,4], S = 34 should result in True, since 34 = 2 + 42 + 42,
e The inputs A = [2,4,4], S = 35 should result in False.
e The inputs A = (2,4, 3,22], S = 21 should result in False.

In order to obtain full points, your algorithm should run in time O(n? - S). Address the following
aspects of your solution:

Theory Task T3.

/9P

You are given an array of n natural numbers aq,...,a, € N, and two natural numbers A, B € N.
You want to determine whether there is a subset I C {1,...,n} satisfying

For example,

e The answer for the input (a;)i<n = [2,4,8,1,4,5,3], A =8 and B = 30 is yes because the set
of indices I = {1,4,6}, which corresponds to (a;)i<;r = [2,1, 5], yields the sum 24+1+5 =38

and the sum-of-squares 2 + 12 4+ 5% = 30.

e The answer for the input (a;)i<n = [2,4,8,1], A= 6 and B = 15 is no.

Provide a dynamic programming algorithm that determines whether such a subset [exists. In order
to get full points, your algorithm should have an O(n- A - B) runtime. Address the following aspects

in your solution:

1) Definition of the DP table: What are the dimensions of the table DPJ[...] 7 What is the

meaning of each entry 7

. : . "be com
1) Definition of the DP table: What are the dimensions 1o 1ot de
of each entry? Theory Task T3. 0 1o
. . An array of non-negative integers A = [aq,...,a,] is called summy if and es be co
2) C'om?outa,tzon of an entT‘y' How can'an entry be cos {2,...,n}, there exists a (possibly empty) set I C {1,...,i — 1} such that q; s?
Specify the base cases, i.e., the entries that do not c terms, every integer in the array except the first one must be the sum of (diftinct) integdrs that Ltion b
it i ution be
3) Calculation order: In which order can entries be ¢ precede it in the array.
entry have been determined in previous steps? For example,
e The array [2,2,4,6,0,12] is summy, because 2 =2, 4 =2+2 6=2+4,12=2+4+6. our algor

4) Extracting the solution: How can the final solution b

e The array [2,2,4,6,0,13] is not summy, since 13 can not be written as a sum of integers from

5) Running time: What is the running time of your alg; (2,2,4,6,0}.
of n and S, and justify your answer.

Provide a dynamic programming algorithm that, given an array A of length n, returns True if the
array is summy, and False otherwise. In order to obtain full points, your algorithm should have
an O(n - max A) runtime (where max A means the maximum value of entries in A). Address the

following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP[...] 7 What is the

meaning of each entry 7

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Extracting the solution: How can the final solution be extracted once the table has been filled

?

5) Running time: What is the running time of your algorithm ? Provide it in ©-notation in terms

of n and max A, and justify your answer.

‘heory Task T3. /9P
ou are given an array of n natural numbers ay,...,a, € N summing to A := > " , a;, which is a
wiltiple of 3. You want to determine whether it is possible to partition {1,...,n} into three disjoint

1bsets I, J, K such that the corresponding el of the ield the same sum, i.e.

lote that I,J, K form a partition of {1,...,n} ifand only if INJ =1TNK = JNK = () and
UJUK ={1,...,n}.

or example, the answer for the input [2,4,8,1,4,5,3] is yes, because there is the partition {3,4},
2,6}, {1,5,7} (corresponding to the subarrays [8, 1], [4, 5], [2,4, 3], which are all summing to 9).
)In the other hand, the answer for the input [3,2,5, 2] is no.

rovide a dynamic programmaing algorithm that determines whether such a partition exists. Your
lgorithm should have an O(nA?) runtime to get full points. Address the following aspects in your
blution:

1) Definition of the DP table: What are the dimensions of the table DP[...] 7 What is the

meanino nf each entrv?

Theory Task T3 /9P :

eory fask 1. n an entry be computed from the values of other entries?
Let m,r be two integers satisfying 1.> that a finite set A C N of natural ‘ries that do not depend on others.
numbers is (m, r)-aligned if

can entries be computed so that values needed for each
vious steps?
Note that for A = &, we adopt the convention that ence, the empty set is (m, 0)-aligned 1e final solution be extracted once the table has been filled?
z€A

for every m > 0. r time of your algorithm? Provide it in ©-notation in terms
Given three integers m,r,n such that 0 < r < m < n and m > 2, we would like to determine the o

number of subsets of {1,2,...,n} which are (m,r)-aligned.

For example,

e If r =1, m =2 and n = 3, the subsets of {1,2,3} that are (3,1)-aligned are {1}, {3}, {1,2}

and {2, 3}. Hence, the answer is 4.

Provide a dynamic programming algorithm that solves the problem. In order to get full points, your
algorithm should have an O(n - m) runtime. Address the following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP[...] ? What is the

meaning of each entry ?

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Eztracting the solution: How can the final solution be extracted once the table has been filled

?

5) Runmning time: What is the running time of your algorithm ? Provide it in ©-notation in terms

of n, m and r, and justify your answer.

DP

A

elements ai according to

E aZ:A ai|az|as|as|as
— — 11210110

=y
— sum of the elements 3
Index-set |

example:

elements a; according to

D ai=A

€1
— sum of the elements 3
Index-set |
dl | d2 |az | dag | ads | de | A7
; — A 112/o0l1/0/0]0
€1 A=3

example:

elements a; according to

D ai=A

€1
— sum of the elements 3
Index-set |
dl | d2 |az | dag | ads | de | A7
; — A 112/o0l1/0/0]0
€1 A=3

— ar+a=1+2=3=A

DP

elements ai according to

1C{1,...,n) E A; = A

iel

sum of the elements 3
Index-set |

S=Zai+2a?. Za.,'zA and Za?zB. Zai=zaj=§:ak=g- Z::)modm:r.
€.

icl jeJ el iel 134 j€J keK

DP

Practice

/9P

Theory Task T3.

Let A = [ay,aq,...,a,] be an array of non-negative integers. Given A and a non-negative integers
S > 0, we want to determine whether S can be written as a (non-repeating) sum of elements of A,

where we are allowed to take the square of elements. Formally, we want to determine if there exist
I,JCA{L,2,....n} with INJ=0,TUJ ={1,2,...,n} such that:

S = Zai—l—Za?.

il jed

Provide a dynamic programming algorithm that outputs True if this is possible, and False otherwise.
For example,

e The inputs A = [2,4,4], S = 34 should result in True, since 34 = 2 + 42 + 42,
e The inputs A = [2,4,4], S = 35 should result in False.
e The inputs A = (2,4, 3,22], S = 21 should result in False.

In order to obtain full points, your algorithm should run in time O(n? - S). Address the following
aspects of your solution:

1) Definition of the DP table: What are the dimensions

of each entry? Theory Task T3.

2) Computation of an entry: How can an entry be co
Specify the base cases, i.e., the entries that do not ¢

. . . recede it in th .
3) Calculation order: In which order can entries be ¢ s

entry have been determined in previous steps? For example,

4) Eztracting the solution: How can the final solution b

5) Running time: What is the running time of your alg;

{2,2,4,6,0}.
of n and S, and justify your answer.

An array of non-negative integers A = [aq,..
{2,...,n}, there exists a (possibly empty) set I C {1,...,i — 1} such that a; = } ;. a;. In other s 7
terms, every integer in the array except the first one must be the sum of (distinct) integers that

e The array [2,2,4,6,0,12] is summy, because 2 =2,4=2+4+2,6=2+4,12=2+4+6.

Theory Task T3.

You are given an array of n natural numbers aq, ..

el el

For example,

e The answer for the input (a;)i<n = [2,4,8,1,4,5,3], A =8 and B = 30 is yes because the set
of indices I = {1,4,6}, which corresponds to (a;)i<;r = [2,1, 5], yields the sum 24+1+5 =38

and the sum-of-squares 2% + 12 4+ 5% = 30.

e The answer for the input (a;)i<n = [2,4,8,1], A= 6 and B = 15 is no.

Provide a dynamic programming algorithm that determines whether such a subset [exists. In order
to get full points, your algorithm should have an O(n- A - B) runtime. Address the following aspects

in your solution:

.,a, € N, and two natural numbers A, B € N.
You want to determine whether there is a subset I C {1,...,n} satisfying

Z%’:A and Z(LZZ:

B.

‘heory Task T3.

/9P

‘ou are given an array of n natural numbers aq, .
wiltiple of 3. You want to determine whether it is possible to partition {1,...,n} into three disjoint
1bsets I, J, K such that the corresponding elements of the array yield the same sum, i.e.

Sa=Y 0= a=1

el

/9P

.., 0y € N summing to A := > | a;, which is a

JjeJ keK

lote that I,J, K form a partition of {1,...,n} ifand only if INJ =1TNK = JNK = () and

UJUK ={1,...,n}.

or example, the answer for the input [2,4,8,1,4,5,3] is yes, because there is the partition {3,4},

2,6}, {1,5,7} (corresponding to the subarrays [8,1], [4,5], [2,4, 3], which are all summing to 9).

>lution:

1) Definition of the DP table: What are the dimensions of the table DPJ[...] 7 What is the

meaning of each entry 7

“be com
/8P 1o not de
., ay,] is called summy if and only if, for all i € es be co

lution be

our algo1

e The array [2,2,4,6,0,13] is not summy, since 13 can not be written as a sum of integers from

Provide a dynamic programming algorithm that, given an array A of length n, returns True if the
array is summy, and False otherwise. In order to obtain full points, your algorithm should have
an O(n - max A) runtime (where max A means the maximum value of entries in A). Address the

following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP[...] ? What is the

meaning of each entry 7

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Extracting the solution: How can the final solution be extracted once the table has been filled

?

5) Running time: What is the running time of your algorithm ? Provide it in ©-notation in terms

of n and max A, and justify your answer.

)In the other hand, the answer for the input [3,2,5, 2] is no.

rovide a dynamic programming algorithm that determines whether such a partition exists. Your
lgorithm should have an O(nA?) runtime to get full points. Address the following aspects in your

1) Definition of the DP table: What are the dimensions of the table DP[...] 7 What is the

meanino nf each entrv?

Theory Task T3. /9P

Let m,r be two integers satisfying m > 2 and 0 < r < m. We say that a finite set A C N of natural

numbers is (m, r)-aligned if
(Z :c) modm =r.

z€A

Note that for A = &, we adopt the convention that Z x = 0. Hence, the empty set is (m,0)-aligned

z€A
for every m > 0.

Given three integers m,r,n such that 0 < r < m < n and m > 2, we would like to determine the
number of subsets of {1,2,...,n} which are (m,r)-aligned.

For example,

e If r =1, m =2 and n = 3, the subsets of {1,2,3} that are (3,1)-aligned are {1}, {3}, {1,2}
and {2,3}. Hence, the answer is 4.

Provide a dynamic programming algorithm that solves the problem. In order to get full points, your
algorithm should have an O(n - m) runtime. Address the following aspects in your solution:

1) Definition of the DP table: What are the dimensions of the table DP[...] ? What is the
meaning of each entry ?

2) Computation of an entry: How can an entry be computed from the values of other entries ?
Specify the base cases, i.e., the entries that do not depend on others.

3) Calculation order: In which order can entries be computed so that values needed for each
entry have been determined in previous steps ?

4) Eztracting the solution: How can the final solution be extracted once the table has been filled
?

5) Runmning time: What is the running time of your algorithm ? Provide it in ©-notation in terms
of n, m and r, and justify your answer.

n an entry be computed from the values of other entries?
ries that do not depend on others.

can entries be computed so that values needed for each
vious steps?

1e final solution be extracted once the table has been filled?

r time of your algorithm? Provide it in ©-notation in terms
.

Last Session

Organization

 Last session on monday 16 Dec
« Exam Preparation Session
« Exam tipps, lernphase tipps, mock exam
« Recap topics

« The rest will be covered during mock exam

« Semester-end celebration !!!

Questions
Feedbacks , Recommendations

Nil Ozer

